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ABSTRACT  
The problem of scheduling n jobs on m flow shop machines to maximize the (weighted) 

number of Just-In-Time jobs is considered. It is known that this problem is NP-Complete 

even for a single machine, indicating that no efficient optimal solution can be found in 

reliable time for even fairly large instance problems. In this research, two greedy 

heuristic solutions are proposed and compared with an optimum solution found by 

Xpress-MP using small problem instances. Computational results and analysis for 

various scales of instances show that the greedy heuristic algorithms performed 

creditably well when compared with an optimal solution using small problem instances. 

The quality and efficiency of the heuristics coupled with solutions to large instance 

problems are highlighted. 
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1.  Introduction 

In this paper, we consider scheduling n jobs on m machines to maximize the 

(weighted) number of Just-In-Time (JIT) jobs in a flow shop environment. An m-

machine flow shop problem consists of n independent jobs on m machines 

simultaneously available from time zero. It is assumed each job have an interval 

rather than a point in time, called due window of the job. The left and right ends 

of the window are the earliest start time, aj ≥ 0 (i.e. instant at which a job 

becomes available) and the latest due date, dj ≥ 0 (instant by which processing or 

delivery of a job must be completed). There is no penalty when a job is completed 

within the job due window, but earliness (tardiness) penalty is incurred when a 

job is completed before the job earliest start time (after the job latest due date). 

When a sequence of jobs is determined, the jobs undergo operation on all 

machines without changing their sequence. Each job is done at most once on each 
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machine. Each machine can only process one job at a time. No job can be pre-

empted. 

 

The relevance of JIT problem in Production/Industrial systems cannot be over 

emphasized. The problems are Just-In-Time problems where jobs must be ready 

at specific times in order to meet some important situations. These jobs must have 

to go through several machines before they are ready. Production of 

perishable/non-perishable items as an application (e.g. drugs, bulbs, vehicles, 

refrigerators, food, e.t.c) would require them to go through several production 

processes before they are ready for use. Another application is in production units 

with no capacity to allow inventories where the due windows are determined by 

the pick-up times and pick-ups are made by customers. The goal would be to as 

much as possible meet the set time by customers so as not to incur penalty of loss 

of contract, product waste (perishable) if due dates are missed. 

 

Using the problem classification of Graham et al (1979), our problems are 

Fm||(Uj + Vj) and Fm| |wj(Uj + Vj). The F describes the shop (machine) 

environment for flow shop machines and m describes the number of machines. 

The space between the bars is for constraints on the jobs, which include the 

following: preemption, release time, setup, batching precedence, etc. In our case, 

none is considered.  The symbols Uj and Vj are binary (0 or 1) and indicate 

whether a job is scheduled early or tardy respectively; 0 is used when the job is 

scheduled on-time and 1 is used if it is not (i.e. early or tardy). That is, the 

problems being considered are minimizing the number of early and tardy jobs and 

minimizing the (weighted) number of early and tardy jobs on m Flow Shop 

machines. However, the dual of these problems are maximizing the number of on-

time jobs and maximizing the (weighted) number of on-time jobs (JIT) on m Flow 

Shop machines. The remaining parts of the paper are as follows: In Section two, 

the notations and definition of terms used are stated. Section three considers the 

literature review. The problem formulation is outlined in Section four. The 

heuristic algorithms for the problems are presented in Section five. In Section six, 

the problem generation and computational results are enumerated. The discussion 

of findings are presented in Section seven and finally, in Section eight, the 

conclusion is presented. 

 

2.  Notation and Definitions 

In this section, terms and notation used in this paper are presented. Some of the 

terms with their definitions are: 
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Greedy Heuristics: Greedy heuristics represent a common subtype of 

construction heuristics. As the name suggests, the action of these heuristics is 

such that at any decision point the option corresponding to the greatest immediate 

'return' is chosen. 

 

NP: Nondeterministic time- when no deterministic polynomial-time algorithm is 

available to solve the problem. 

 

NP-Hard: A problem is NP-hard if it is at least as hard as any problem in NP. 

 

NP-Complete: A problem is NP- complete if it is both NP-hard and in NP. NP-

complete problems are often addressed by using heuristic methods and 

approximation algorithms. 

 

Just-In-Time (JIT) scheduling: is concerned with scheduling jobs to minimize 

the total cost associated with both early and tardy completion. 

The various notations used throughout the paper are as follows: 

 
: is the start time on ith machine in the kth position, 

: is the processing time of job j on machine i, 

: is the earliest due date of job j, 

: is the latest due date of job j, 

: is the weight of job j, 

 : such that, 

T, L and Q:  are the set of on-time jobs, tardy (late) jobs and unscheduled jobs 

respectively, 

 

3.  Literature Review 

During the past few decades, a considerable amount of work has been conducted 

on scheduling on multiple machines [Adamu and Adewumi (2016)] and single 

machine [Adamu and Adewumi (2014)] in order to minimize the number of tardy 

jobs. Adamu et al (2014) proposed two greedy heuristics for solving the weighted 

case of maximizing the number of JIT jobs on flow shop machines with a 

numerical example and some computational experiments. Yeung et al (2009) 

addressed two due window scheduling problems to minimize the weighted 

number of early and tardy jobs in a two-machine flow shop, where the window 
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size is externally determined. Yeung et al (2009) introduced dominance 

properties and theorems, lower bounds and upper bounds on the window location. 

Yeung et al (2009) showed the problems are NP-Hard in the ordinary sense. 

Yeung et al (2009) proposed a pseudo polynomial dynamic programming 

algorithms for the problems (F||∑(ujUj + vjVj) and F||∑(ujUj + vjVj) + L(d)). 

Scheduling to maximize the weighted number of Just-In-Time jobs that should be 

completed exactly on their due dates was considered by Choi and Yoon (2007) in 

which they proved that this problem is NP-complete. When the weights are all 

identical, they showed that the problem can be solved in polynomial time. For 

when the number of machines, m ≥ 3 with identical job weights, the problem is 

NP-hard in the strong sense. 

 

Hariri and Potts (1989) solved F2||∑Uj problem using a branch and bound and 

developed three lower bounds: The first was obtained by solving a single machine 

subproblem and the second was derived from improvement procedures 

considering all subproblems simultaneously. Some 25 job problems were solved 

in 60 seconds cut off time. Bulfin and M’Hallah (2003) constructed an exact 

algorithm to solve the weighted number of tardy jobs on two-machine flow shop 

scheduling problem (F2||∑wjUj). Bulfin and M’Hallah (2003) provided a branch 

and bound algorithm that used surrogate relaxation resulting in a multiple-choice 

knapsack providing bounds. Extensive computational experiments conducted 

indicate problems with 100 jobs can be solved quickly. This problem is NP Hard 

in the strong sense. Lenstra et al (1977) had shown that the number of tardy jobs 

in a two-machine flow shop, even if all jobs have a common due date, (F2|dj = 

D|∑Uj) is NP-hard in the strong sense. The others that considered the same 

problem are Gupta and Hariri (1994) and Jozefowska et al (1994). Ho and Gupta 

(1995) proposed polynomial algorithms to optimally solve two special cases of 

the F2|dj |∑Uj problem. For the problem of F2|dj |∑Uj, Gupta and Hariri (1997) 

constructed several heuristics and gave four polynomially solutions to some 

special cases for the problem. Croce et al (2000) presented some structural 

properties of the F2|dj = d|∑Uj problem, i.e. minimizing the total number of tardy 

jobs against a common due date. A branch and bound was proposed to find an 

optimal solution to the problem. The algorithm was able to solve up to 900 jobs 

instance. Lin (2001) proved that some special cases previously known as NP hard 

were actually NP-hard in the strong sense. He further constructed an O(n
2
) 

algorithm to solve a special case when all jobs have a common processing time on 

the first machine and agreeable processing times and due dates on the other 

machines. Xiang et al (2000) proposed polynomial time algorithms for solvable 
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special cases of F|idm|∑Uj and F|ddm|∑Uj, where idm is an increasing series of 

dominating machines and ddm a decreasing one. 

 

Shabtay and Bensoussan (2012) provided a pseudo-polynomial time algorithm to 

solve the F2||∑wjUj and proved that it is NP-hard in the ordinary sense. They 

showed how the pseudo-polynomial algorithm can be converted to a fully 

polynomial time algorithm scheme (FPTAS). They further proved that the same 

problem is strongly NP-hard for both a two-machine job shop and open shop 

scheduling system. Baki and Vickson (2004) considered the one operator two 

machine flow shop problem to minimize the weighted number of tardy jobs and 

proved that the flow shop total tardy jobs problem is NP-hard. Baki and Vickson 

(2004) gave two pseudo-polynomial dynamic algorithms for this problem (F2, 

S1||∑wjUj). Desprez et al (2006) considered the flow shop in which each 

operation needs several resources, some of these resources being polyvalent and 

used a Genetic Algorithm for solving the problem and evaluated the effectiveness 

of the proposed method against a commercial software package. Lawler and 

Moore (1969) addressed the F2|dj = D|∑Uj problem and provided a pseudo-

polynomial dynamic programming algorithm with time complexity O(nD
2
). Ucar 

and Tasgetiren (2006) considered the problem Fm||∑Uj and used discrete Particle 

Swarm Optimization (PSO) to determine the sequence of n jobs to be processed 

through m machines that minimize the number of tardy jobs. The PSO algorithm 

gave promising solutions by means of the proposed SPV (Smallest Position 

Value) heuristic rule. 

 

In this paper, comparison is made with solution obtained from an existing Mixed 

Integer Linear Program solver for both weighted and unweighted cases of 

scheduling to maximize the Just-In-Time jobs on a Flow Shop machine. 

Extensions to large sample problems are also considered. 

 

4.  Problem Formulation 

The mathematical formulation for the problems, Fm||∑(Uj+Vj) and 

Fm||∑wj(Uj+Vj) is discussed in this section. For ease of presentation, we will take 

the dual, which is to maximize the JIT jobs, Fm||∑xijk  and Fm||∑wjxijk. 

 

The objective function given below is the maximization of the (weighted) number 

of JIT jobs. Constraint (1) ensures each job will have m positions on the m 

machines. Constraint (2) specifies that each position on each machine cannot be 

occupied by more than one job. In constraint (3), jobs are prevented from 

finishing before their earliest due date. Similarly, in constraint (4), no job 
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scheduled in position k has its completion time greater than its latest due date if it 

is on-time. Constraint (5) ensures that the job j sequenced in position k on 

machine i will not start before the completion time of the job j on machine i-1 in 

position k. In constraint (6), the start time in position k on any machine i is greater 

or equal to zero. Finally, in constraint (7), a binary variable xijk=1 if job j is 

scheduled on-time at position k on machine i. 

                 Max.      

 

Subject to the following constraints: 

                
         

                
 

                
 

               
 

               
 

               
 

              
 

 

5.  Algorithms  

Two greedy heuristics are proposed for the solution to the problems Fm||∑(Uj+Vj) 

and Fm||wj(Uj+Vj) which are denoted as Algorithm F1 and Algorithm F2. Each of 

the two algorithms has two variant, one for minimizing the number of early and 

tardy jobs and the second for minimizing the weighted number of early and tardy 

jobs. The differences can be found in steps 3 and 5. 

 

Algorithm F1 

1. Re-index the jobs  Э a1≤a2≤ . . . ≤an 

 

2. T:=Ø; L:= Ø; Q:={J1,J2, . . . ,Jn}; t10:=0; i:=1,2, . . . ,n; Q is the set of 

unscheduled jobs, T is the set of scheduled jobs and L is the set of tardy or 

early jobs.  |T|:=0 

 



Unilag Journal of Medicine, Science and Technology (UJMST) Vol. 5 No 1, 2017 

 

 

80 

3. Assign J1 to machines and break tie by smallest pij or highest wj/pij 

 

4. For j: = 1 to n  do 

For i:= 1 to m do 

t1j = Max{t1j-1,aj - ∑i=1,mpij} + pij 

tij = ti-1j + pij 

End for 

If tmj ≤ dj then 

T:= T U{Jj}; Q:= Q\{Jj}; j:= j +1; |T|:= |T| + 1 

Else step 5 

End if 

End for 

 

5. Find jobs Jr in T with pr > pj or wr < wj  

For l:= 1 to |Jr|  

Remove Job Jl from T  

Reassign  Job Jj 

 

If tmj ≤ dj then  

T:= T U{Jj}; L:= L U {Jl};  T:= T\{Jl}; j:= j +1; |T|:= |T| + 1 

 

Step 4 

Else  

End if 

End for 

L:= L U {Jj}; j:= j +1 

Step 4 

 

6. Stop (Find total weights in L or T) 

 

In Step 3, we break tie by smallest pij  for minimizing the number of early and 

tardy jobs and highest  for the weighted number of early and tardy jobs. In 

Step 5,  pr > pj is used for minimizing the number of early and tardy jobs and wr < 

wj for the weighted number of early and tardy jobs. L contains the weights of 

early and tardy jobs while T contains the JIT jobs. 
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Algorithm F2 

1. Re-index the jobs  Э a1≤a2≤ . . . ≤an 

2. T:=Ø; L:= Ø; Q:={J1,J2, . . . ,Jn}; t10:=0; i:=1,2, . . . ,n; |T|:=0 

3. Assign J1 to machines and break tie by smallest pij or highest wj/pij 

 

4. For j:=  1 to n  do 

For i:= 1 to m do 

t1j = Max{t1j-1,aj - ∑i=1,mpij} + pij 

tij = ti-1j + pij 

       End for 

If tmj ≤ dj then 

T:= T U{Jj}; Q:= Q\{Jj}; j:= j +1; |T|:= |T| + 1 

Else step 5 

End if 

End for 

 

5. Find jobs Jr in T with  

 or r=  j=   

For l:= 1 to |Jr|  

Remove Job Jl from T  

Reassign  Job Jj 

If tmj ≤ dj then  

T:= T U{Jj}; L:= L U {Jl}; T:= T\{Jl}; j:= j +1; |T|:= |T| + 1 

Step 4 

Else  

End if 

End for 

L:= L U {Jj}; j:= j +1 

Step 4 

 

6.  Stop (Find total weights in L or T)     

           

In Step 3, we break tie by smallest pij for minimizing the number of early and 

tardy jobs and highest  for the weighted number of early and tardy jobs. In 

Step 5, 
 
is used for minimizing the number of early 
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and tardy jobs and  r=  j=   for the weighted number of early 

and tardy jobs. 

 

The time complexity of these algorithms is at most O(n
2
). L contains the weights 

of early and tardy jobs while T contains the JIT jobs. 

 

6.  Problem Generation and Computational Results 

The preceding heuristics were evaluated on randomly generated problems and 

compared with an optimal solution, Xpress-MP a commercial software from 

FICO optimization(2014). The problem formulation given in Section 4 was 

programmed using the software to give optimal solutions for small instances 

generated by the procedure given below. The software is designed to give optimal 

solutions to the Mixed Integer Linear programming. The software is to minimize 

the (weighted) number of early and tardy jobs on a flow shop machine. Extensive 

evaluation of their performance were investigated. 

 

6.1   Problem Generation 

The heuristics F1 and F2 were tested on problems generated with n = 10, 20, 30, 

40, 50, 60, 70 and 80 and the number of machines, m, set at levels (steps) m = 3, 

5, 7, 9, 12. Using similar problem instance as Bulfin and M’Hallah (2003), Hariri 

and Potts (1989) and Gupta and Hariri (1997), two parameters k1 and k2 were 

chosen to provide upper and lower bounds for the due dates. k1 = {0.2, 0.4, 0.6, 

0.8} and k2 = {0.4, 0.6, 0.8, 1.0}, where k1 < k2. Let 

/n be an estimate of the maximum 

completion time P, obtained by identifying the machine i* with the largest total 

processing time.  The integer earliest due date, aj, was randomly generated from 

the uniform distribution [0,Pk1] and the integer latest due date, dj, was randomly 

generated from the uniform distribution [aj+∑i=1,mpij, aj+∑i=1,mpij +Pk2 ]. The 

integer weights, wj, were randomly generated from the interval [1,10]. The integer 

processing times, pij, were randomly generated from the uniform distribution 

[1,99]. For each of the ten pairs of k1 and k2 parameters, ten instances were 

randomly generated for n = 10, 20 instances were randomly generated for n = 20, 

e.t.c. For each n and m, 30 replications were generated and the average of the 

early and tardy weights and time are tabulated. The problem generator and the 

heuristics were implemented with Java on Eclipse. The two heuristics were 

compared with results from an optimal solution software, Xpress-MP(TM) on 

Intel(R) core(TM) i3-3217U CPU with 1.8 GHz, 4 GB RAM. The optimal 

solution was only able to consider instances of 80 jobs and below. For instances 
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above 80 jobs, results generated were not consistent and no optimal solution 

found after 1000 seconds.  

 

6.2  Results 

The computational results for both the weighted and unweighted number of early 

and tardy jobs are found in Tables 1 and 2. Both weights of the early and tardy 

jobs and the running time in seconds for Algorithms F1, F2 and the optimal 

solution are presented. For the weighted case in Table 1, wT, indicates the 

average weighted number of early and tardy jobs on the various machines. As 

would be expected, the weights (penalties) of the optimal solution are smaller to 

that of the heuristics. While nT indicates the average number of early and tardy 

jobs on the various machines.  

 

7.  Discussion 

 

Weighted Case 

From Table 1, it was observed that the range of the average weighted number of 

early and tardy jobs for F1 is 35.5334, F2 is 34.4667 and the optimum is 

33.75865. The median average weighted number of early and tardy jobs for F1 is 

4.86665, F2 is 4.85 and optimum is 3.5837. Similarly, when comparison is made 

about the minimum average weighted number of early and tardy jobs, F1 is 

0.3333, F2 is 0.3333 and optimum is 0.1888 and the maximum average weighted 

number of early and tardy jobs for F1 is 35.8667, F2 is 35.8 and optimum is 

33.94745. In addition, the mean average weighted number of early and tardy jobs 

for F1 is 7.9675, F2 is 7.911665 and optimum is 7.004014. 

 

The analysis of the running time in seconds for the two heuristics and the optimal 

are as follow: The range of average time to run the algorithms in seconds for F1 is 

0.007933333, F2 is 0.0094333 and optimum is 8.5515. The median average 

running time in seconds for F1 is 0.004133333, F2 is 0.0039 and optimum is 

1.069317. The minimum average running time in seconds for F1 is 0.001, F2 is 

0.0005 and optimum is 0.0213. Similarly, the maximum average running time in 

seconds for F1 is 0.008933333, F2 is 0.0099333 and optimum is 8.5728. In 

addition, the mean average running time in seconds for F1 is 0.004151667, F2 is 

0.0038042 and optimum is 2.051825. 

 

The weighted number of early and tardy jobs generated by the heuristics are not 

too different from the results produced as optimal solutions. Averagely, heuristic 

F2 produces better results when compared with heuristic F1. Conversely, F1 takes 
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lesser running time to complete compared to F2. In all cases considered, the 

running time for the heuristics are less than a second. It was observed that as the 

number of jobs increases, the running time of the optimal solutions become 

exponential.  

 

Unweighted Case 

From Table 2, it was observed that the range of the average number of early and 

tardy jobs for F1 is 6.6333, F2 is 6.6 and the optimum 5.9. The median average 

number of early and tardy jobs for F1 is 0.96665, F2 is 0.96665 and optimum is 

0.6683. Similarly, when comparison is made about the minimum average number 

of early and tardy jobs, F1 is 0.1, F2 is 0.1 and optimum is 0.01 and the maximum 

average number of early and tardy jobs for F1 is 6.7333, F2 is 6.7 and optimum is 

5.91. In addition, the mean average number of early and tardy jobs for F1 is 

1.609995, F2 is 1.601663 and optimum is 1.251663. 

 

The analysis of the running time in seconds for the two heuristics and optimal 

solutions are as follow: The range of average time to run the algorithms in 

seconds for F1 is 0.006333, F2 is 0.007833 and optimum is 14.208. The median 

average running time in seconds for F1 is 0.004167, F2 is 0.0034 and optimum is 

1.176417. The minimum average running time in seconds for F1 is 0.001533, F2 

is 0.0001033 and optimum is 0.019267. Similarly, the maximum average running 

time in seconds for F1 is 0.004356, F2 is 0.003926 and optimum is 2.323271. In 

addition, the mean average running time in seconds for F1 is 0.004356, F2 is 

0.003926 and optimum is 2.323271. 

 

The number of early and tardy jobs generated by the heuristics are not too 

different from the results produced as optimal solutions. As in the weighted case, 

averagely, heuristic F2 produces better results when compared with heuristic F1. 

Conversely, F1 takes lesser running time to complete compared to F2. In all cases 

considered, the running time for the heuristics are less than a second. It was 

observed that as the number of jobs increases the running time of the optimal 

solutions become exponential. 

 

Comparison of means of the three algorithms were performed using ANOVA and 

the results are presented in Table 3, for the weighted number of early and tardy 

jobs on a flow shop machine and Table 4, the number of early and tardy jobs in a 

flow shop machine. Statistical analyses in Tables 3 and 4 further show that there 

is no significant difference in the performance of the heuristics, when F1 and F2 

are compared with the results produced as optimal solutions. This indicates that 
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for large samples where the optimal solution may not be feasible in a realistic 

time, the heuristics can come handy. 

 

In Figures 1a- 1d, the chart of time performance of the three algorithms are 

presented for both minimizing the weighted number of early and tardy jobs and 

minimizing the number of early and tardy jobs for m=3 and m=12. It is observed 

that the time performances of the optimal solutions are exponential as the number 

of jobs increases. Furthermore, it can be observed that as the number of machines 

increases, the time performance of the algorithms reduces, indicating the number 

of machines is inversely proportional to the time performance of the algorithms in 

both the weighted and unweighted cases. 

 

Large Instances 

The heuristics F1 and F2 were tested on large problem instances with n = 500, 

1000, 1500, 2000, 2500 and 3000 and the number of machines, m, set at levels m 

= 3, 5, 7, 9, 12. Using similar problem instance as indicated earlier, for each n and 

m, 30 replications were generated and the average of the early and tardy weights 

and performance times are tabulated. The computational results for both the 

weighted and unweighted number of early and tardy jobs are found in Table 5. 

Both weights of the early and tardy jobs and the running time in seconds for F1 

and F2 are presented.  
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Table 1: Comparison of Heuristics with Optimal Solution for Weighted Cases 

Number of  

Machines 

Number 

of Jobs 

WEIGHTED 

wT Running TIME 

F1 F2 optima F1 F2 optima 

3 

10 2.5667 2.3333 2.0988 0.0010 0.0005 0.0214 

20 3.6667 3.7333 3.2878 0.0037 0.0015 0.1177 

30 10.9000 10.6333 9.9533 0.0041 0.0037 0.5557 

40 14.4000 14.0000 13.0855 0.0031 0.0041 0.6683 

50 20.2333 20.2000 19.0510 0.0047 0.0053 2.3876 

60 26.8000 26.6667 25.2832 0.0047 0.0046 4.8581 

70 30.9000 30.4333 28.8153 0.0073 0.0099 6.4134 

80 35.8667 35.8000 33.9475 0.0089 0.0072 8.5728 

5 

10 1.2667 1.4333 1.1988 0.0021 0.0031 0.0213 

20 3.0000 3.1333 2.6878 0.0020 0.0011 0.1104 

30 6.1000 6.1333 5.4533 0.0016 0.0010 0.5484 

40 6.5667 6.4000 5.4855 0.0026 0.0031 0.6990 

50 7.4000 7.4667 6.3177 0.0041 0.0041 1.3396 

60 11.5000 11.2667 9.8832 0.0042 0.0047 2.2636 

70 15.9333 15.8333 14.2153 0.0042 0.0067 5.9523 

80 19.6667 19.5667 17.7142 0.0052 0.0042 6.0408 

7 

10 1.1333 1.1333 0.8988 0.0010 0.0026 0.0235 

20 2.7000 2.7000 2.2545 0.0037 0.0026 0.2172 

30 3.6333 3.6333 2.9533 0.0026 0.0036 0.2907 

40 4.0667 4.0667 3.1522 0.0046 0.0032 0.6161 

50 5.7000 5.6667 4.5177 0.0089 0.0036 1.4412 

60 8.3000 8.2667 6.8832 0.0032 0.0021 2.8151 

70 10.1000 10.3333 8.8795 0.0062 0.0037 4.0200 

80 11.5000 11.0667 9.4487 0.0057 0.0042 5.9013 

9 

10 0.3333 0.3333 0.1888 0.0016 0.0021 0.0255 

20 2.3000 2.3333 1.8878 0.0016 0.0005 0.2494 

30 1.9000 1.8000 1.1200 0.0041 0.0053 0.3345 

40 4.1000 4.1000 3.1855 0.0048 0.0011 0.7551 

50 4.7333 4.7333 3.5843 0.0041 0.0042 1.3641 

60 5.0000 4.9667 3.5832 0.0037 0.0031 2.3116 

70 6.3000 6.2667 4.6487 0.0036 0.0047 3.3627 
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80 7.5667 7.5000 7.2655 0.0067 0.0068 4.1778 

12 

10 0.7000 0.7000 0.5545 0.0026 0.0016 0.0360 

20 1.7000 1.7000 1.5200 0.0037 0.0026 0.2812 

30 1.7333 1.7667 1.6215 0.0031 0.0047 0.3844 

40 2.6000 2.5667 1.1832 0.0042 0.0058 0.8177 

50 3.1333 3.1333 1.5153 0.0052 0.0042 1.3210 

60 3.0667 3.0667 2.8322 0.0042 0.0041 2.2027 

70 3.8333 3.8000 2.6510 0.0073 0.0051 2.9798 

80 5.8000 5.8000 5.3545 0.0062 0.0057 5.5737 

 

Table 2: Comparison of Heuristics with Optimal Solution for Unweighted Cases 

Number of 

Machines 

Number 

of Jobs 

UNWEIGHTED 

nT Running Time 

F1 F2 Optima F1 F2 Optima 

3 

10 0.5000 0.5000 0.4100 0.0026 0.0010 0.0235 

20 1.1667 1.1667 0.9767 0.0026 0.0026 0.1876 

30 1.9333 2.0000 1.7100 0.0036 0.0021 0.5678 

40 3.0000 2.9333 2.5433 0.0031 0.0058 1.3225 

50 3.9000 3.8000 3.3100 0.0042 0.0057 1.7642 

60 4.9000 4.8667 4.2767 0.0042 0.0052 4.2278 

70 6.3000 6.2333 5.5433 0.0062 0.0068 10.4375 

80 6.7333 6.7000 5.9100 0.0046 0.0079 14.2273 

5 

10 0.3667 0.3667 0.2767 0.0015 0.0016 0.0193 

20 0.7000 0.7000 0.5100 0.0016 0.0015 0.1552 

30 0.8667 0.8667 0.5767 0.0041 0.0031 0.5402 

40 1.7333 1.7333 1.3433 0.0026 0.0021 0.7219 

50 2.0000 2.0000 1.5100 0.0047 0.0036 1.5209 

60 2.4333 2.3667 1.7767 0.0026 0.0089 3.7274 

70 3.1000 3.1333 2.4433 0.0053 0.0068 6.3451 

80 3.7333 3.7000 2.9100 0.0062 0.0067 6.8728 

7 

10 0.3000 0.3000 0.2100 0.0042 0.0016 0.0244 

20 0.2333 0.2333 0.0433 0.0026 0.0021 0.2125 

30 0.7333 0.7333 0.4433 0.0042 0.0026 0.2923 

40 0.7667 0.7667 0.3767 0.0031 0.0021 0.6432 

50 1.1333 1.1333 0.6433 0.0058 0.0026 1.5423 

60 1.5000 1.5333 0.9433 0.0031 0.0057 2.1746 

70 1.9000 1.9000 1.2100 0.0057 0.0042 2.9424 
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80 2.5667 2.5000 1.7100 0.0068 0.0052 5.4441 

9 

10 0.1000 0.1000 0.0100 0.0031 0.0026 0.0275 

20 0.4000 0.4000 0.2100 0.0032 0.0026 0.2381 

30 0.6667 0.6667 0.3767 0.0057 0.0030 0.3698 

40 0.9000 0.9000 0.5100 0.0032 0.0046 0.6371 

50 0.9333 0.9333 0.5433 0.0053 0.0057 1.5287 

60 1.0000 1.0000 0.6100 0.0047 0.0047 2.0730 

70 1.1333 1.1333 0.7433 0.0064 0.0047 3.5007 

80 1.5333 1.5333 1.1433 0.0079 0.0032 4.6664 

12 

10 0.2333 0.2333 0.1433 0.0020 0.0021 0.0354 

20 0.3000 0.3000 0.2100 0.0016 0.0037 0.2870 

30 0.4667 0.4667 0.3767 0.0031 0.0052 0.4011 

40 0.7000 0.7000 0.6100 0.0079 0.0021 0.8225 

50 0.7667 0.7667 0.6267 0.0052 0.0026 1.0304 

60 0.8333 0.8333 0.6933 0.0068 0.0021 1.9381 

70 0.9333 0.9333 0.7933 0.0056 0.0053 3.8215 

80 1.0000 1.0000 0.8600 0.0073 0.0052 5.6171 

 

Table 3a: Summary: Single Factor for the Weighted case 

SUMMARY 

      Groups Count Sum Average Variance 

  F1 40 318.7 7.9675 69.72401 

  F2 40 316.4666 7.911665 68.58823 

  OPTIMA 40 280.1605 7.004014 63.03419 

   

Table 3b: ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Groups 23.403 2 11.7017 0.174352 0.84 3.0738 

Within Groups 7852.511 117 67.11548 

   

       
Total 7875.914 119         
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Table 4a: Summary: Single Factor for the Unweighted case 

SUMMARY 

      
Groups Count Sum Average Variance 

  F1 40 64.3998 1.609995 2.530769 

  F2 40 64.0665 1.601663 2.478511 

  OPTIMA 40 50.0665 1.251663 1.973572 

  

       Table 4b:ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Groups 3.3463 2 1.673144 0.718823 0.49 3.0738 

Within Groups 272.3312 117 2.327617 

   

       
Total 275.6775 119         

 

For the weighted case, wT, indicates the average weighted number of early and 

tardy jobs on the various machines. While nT indicates the average number of 

early and tardy jobs on the various machines.  

 

Heuristics F2 is slightly better in minimizing the weighted number of early and 

tardy jobs and the number of early and tardy jobs compared to F1. Conversely, 

again, the time performance of F1 is better when compared to F2. In some 

instances, the running time of F2 is relatively higher. In addition, the running time 

of both heuristics for the weighted and unweighted cases reduces as the number 

of machines increases. Similarly, for both weighted and unweighted cases, as n 

increases from 500 to 3,000, so does the time performances of both heuristics 

increase. 
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Table 5: Large Instances for Weighted and Unweighted Jobs 

m n 

WEIGHTED UNWEIGHTED 

wT 
CPU RUNNING 

TIME nT 
CPU RUNNING 

TIME 

F1 F2 F1 F2 F1 F2 F1 F2 

3 

500 216.8333 216.7667 0.2167 0.2599 39.2333 39.1333 0.1823 0.2056 

1000 417.3333 416.4667 0.6600 1.1265 76.3333 76.3333 0.5870 0.7240 

1500 636.6667 635.5000 1.6981 2.9101 117.3667 117.3333 1.1778 1.4755 

2000 845.2000 844.6333 3.1189 6.1248 152.3333 152.2667 2.0653 2.6278 

2500 1057.7330 1057.0330 3.4684 9.7579 190.6667 190.6000 3.2633 4.2951 

3000 1255.1330 1254.0330 4.9925 15.2173 231.6333 231.5667 4.6561 6.1811 

5 

500 121.5333 120.9333 0.0911 0.1162 23.0333 23.0000 0.1125 0.1302 

1000 243.6000 243.6667 0.3005 0.5902 43.4333 43.4000 0.3033 0.3709 

1500 355.5667 355.3667 0.6454 1.6235 65.1000 65.1333 0.6151 0.9066 

2000 458.0667 457.2333 1.1147 3.4441 84.6000 84.6000 1.0839 1.5892 

2500 580.6333 580.6333 1.7515 6.2895 104.9000 104.8667 1.6996 2.5606 

3000 680.4333 679.8000 2.5336 10.1105 127.2000 127.2000 2.4704 3.9992 

7 

500 85.3667 85.3000 0.0657 0.0842 14.3333 14.3333 0.0662 0.0766 

1000 156.9333 156.5333 0.1974 0.3912 28.6000 28.6000 0.1959 0.2625 

1500 223.9333 223.8667 0.4167 1.0668 40.8667 40.8667 0.3985 0.5787 

2000 298.4333 297.7333 0.6960 2.4065 54.7667 54.7667 0.7078 1.0710 

2500 372.0333 371.8667 1.0791 4.3111 67.7333 67.7333 1.0849 1.7997 

3000 441.1000 440.9333 1.6478 7.0831 80.6667 80.6333 1.5959 2.7846 

9 

500 57.3000 57.2333 0.0467 0.0616 10.6667 10.6667 0.0506 0.0587 

1000 112.3667 112.3000 0.1507 0.2943 20.1000 20.1000 0.1453 0.1974 

1500 175.5000 175.2667 0.3276 0.8872 29.6667 29.6667 0.2974 0.4686 

2000 216.8667 216.6000 0.4972 1.7731 38.3667 38.3333 0.4918 0.8225 

2500 255.6333 255.2667 0.8080 3.0632 49.0000 48.9333 0.7515 1.3636 

3000 310.4000 310.2667 1.1275 5.1263 58.8000 58.8000 1.1365 2.1209 

12 

500 38.8667 38.8000 0.0512 0.0557 7.7000 7.7000 0.0490 0.0494 

1000 73.6667 73.4000 0.1229 0.2115 13.4333 13.4333 0.1219 0.1521 

1500 108.4333 108.4333 0.2502 0.5693 20.2000 20.2000 0.2203 0.3559 

2000 143.8333 143.8000 0.3713 1.1589 26.3000 26.3000 0.3662 0.6651 

2500 179.0667 178.7667 0.5907 2.1328 33.5000 33.5000 0.5927 1.0511 

3000 209.9667 209.5667 0.8015 3.3074 37.2000 37.2000 0.7996 1.4536 

 

 
Figure 1a: Chart of Time Performance of the        Figure 1b: Chart of Time Performance of the Heuristics 

Heuristics and Optima for M=3 in Unweighted Case      and Optima for M=12 in Unweighted Case 
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Figure 1c: Chart of Time Performance of the  Figure 1d: Chart of Time Performance of 

the Heuristics and Optima for M=12 in   Heuristics and Optima for M=3 in   

Weighted Case Weighted Case 

 

8.  Conclusion 

In this paper, scheduling to maximize the (weighted) number of JIT jobs on m 

Flow Shop machines was considered. The dual of this problem is also known as 

minimizing the (weighted) number of early and tardy jobs on m Flow Shop 

machines. It is known that this problem is NP Complete for when the due date is 

at a point in time, indicating no efficient optimal solution in a reliable time for 

even small instance problems. In this research, two greedy heuristic solutions are 

compared with an optimal solution. Computational results and analysis for 

various scales of instances show that the greedy heuristic algorithms performed 

creditably well when compared with an optimal solution using small problem 

instances. The quality and efficiency of the heuristics coupled with solutions to 

large instance problems are highlighted. Further research should seek to improve 

on these results by using Meta-heuristics methods. In addition, approximation and 

pseudo-polynomial algorithms could be developed. 
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