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ABSTRACT 
Distributed Denial of Service (DDoS) attack floods the network with loads of unwanted 

packets and requests that weigh down the system resources such as memory and 

processors. Hidden Markov model (HMM) is one of the models that can be used to 

predict and detect such attacks. A problem to be solved was determining the observable 

states and subsequently, the model parameters since the performance of the model 

depends on the accurate selection of these parameters. In this work, the concept of 

entropy was used to determine the observable states, which characterise the HMM. In 

order to improve computational efficiency of the algorithm for estimating the parameters 

of the model, Kullback-Liebler Divergence (KLD) method was employed for reducing 

and selecting appropriate observable states to achieve a good prediction model. The 

experimental results justified the suitability of KLD in reducing the entropy-based 

observable states of HMM for predicting DDoS attack. 

 

Keywords: HMM, KLD, DDoS, Entropy, Observable States 

 

1.0   INTRODUCTION 

With the present astronomical growth of the Internet and the fact that most 

business transactions are performed online, the issue of security of network 

systems has become more prominent than before. This has led to more researches 

into techniques for protecting and safeguarding network systems. One of such 

areas of research is network attacks prediction. There are several types of network 

attacks and these can be classified into four main categories (Sharma et al., 2015):  

i) Denial of Service (DoS): where an attacker makes network resources too 

busy to serve legitimate requests. Examples are mail bomb, apache, syn 

flood etc.  

ii) Probing (Probe): In probing attack, the attacker scans a network device so 

as to gather information about weaknesses or vulnerabilities that can be 
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exploited to compromise the target system. Examples are nmap, saint, 

mscan, etc.  

iii) User to Root (U2R): in this category, an authorized user attempt to abuse 

the vulnerabilities of the system in order to gain privilege of root user they 

are not authorized for. Example are perl, Fd-format, xterm, etc.  

iv) Remote to Local (R2L): here, a remote user sends packets to a machine 

over the internet to gain access as a local user to a local machine i.e. the 

weaknesses of the system is exploited by an external intruder to access the 

privileges of a local user. Examples include phf, xlock,  guest etc. 

 

The various categories of network attacks aim at undermining the CIA 

(Confidentiality, Integrity and Availability) properties of the network (Sodiya et 

al., 2004). The network attack that is the focus of this paper is DoS, which aims at 

attacking the availability property of the network such that the system is weighed 

down attending to illegitimate requests to the extent that it cannot attend to 

legitimate requests by legitimate users. 

 

Several methods such as Time series, Machine Learning (Seng et al., 2010; 

Zhang et al., 2012; Satpute et al., 2013), Markov Chain (Shin et al,. 2013), 

Hidden Markov Model (HMM) (Cheng et al., 2012; Sendi et al., 2012), Statistical 

Profiling (Saganowski et al., 2013), Data Mining (Sodiya et al., 2007), Neural 

Network (Saini et al., 2014), and combinations of these methods had been applied 

to detecting and predicting DDoS attacks (Siani et al., 2014; Sharma et al., 2015). 

Some of these methods have weaknesses such as false positives, low precision, 

high computational time, etc. For these reasons researches continue to evolve on 

how to improve on these weaknesses. However, among the aforementioned 

approaches, HMMs have been proved to be very promising for anomaly 

prediction over several other techniques because of their high accuracy in 

identifying attacks (Badajena et al., 2012). However, the efficiency of HMM-

based algorithms is hindered by long training time during the construction of the 

models (Sendi et al., 2012).  

 

In this paper, an attempt is made to improve the performance of HMM by using 

the Kullback-Liebler Divergence (KLD) method to reduce the observable states 

of the model. The motivation for using the KLD-enhanced HMM approach is to 

improve the rate of convergence of the prediction model thereby reducing the 

training time as well as computational time as compared to using ordinary HMM 

approach. The quality of our proposed method was evaluated using DARPA 

datasets.  
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DDoS progresses in stages and can therefore be said to have different phases. At 

each phase there are some observable events that occur and these events can be 

used to predict the state of the system and what could happen in the system in the 

foreseeable future (Afolorunso et al., 2016). According to the experiments run by 

the MIT Lincoln Lab (MIT Lincoln Lab, 2000), DDoS attack session can be 

grouped into five phases as follows: (Lee et al., 2008) 

1) IPsweep to the DMZ (demilitarized zone) hosts from a remote site. 

2) Probe of live IP’s to look for the sadmind daemon running on Solaris hosts. 

3) Breaks-in via the sadmind vulnerability, both successful and unsuccessful 

on those hosts. 

4) Installation of the Trojan mstream DDoS software on three hosts in the 

DMZ. 

5) Launching the DDoS. 

 

Also, Lee et al., (2008) established nine features that could be used in analyzing 

the characteristics of the network during a DDoS attack. The features are: Entropy 

of source IP address, Entropy of source port number, Entropy of destination IP 

address, Entropy of destination port number, Entropy of packet type, Occurrence 

rate of Packet type (ICMP, UDP, TCP-SYN) and Number of packets. 

 

Afolorunso et al., (2016) established that the aforementioned features can be used 

as observable states in formulating an HMM for predicting DDoS.  

 

This paper proposes an HMM-based approach where these features are the 

observable states while the phases of the DDoS attack form the hidden states of 

the model. To further enhance the model and reduce the computation time, KLD 

was used to reduce the number of observable states of the model. The original 

model containing all the features as well as the KLD-enhanced HMM were 

trained and used to predict attacks. The performance of the two models were 

compared and the results reported. 

 

The rest of the paper is organised as follows. Section 2 discusses related research 

that uses entropy and HMM for attack detection and prediction, Section 3 

describes the research methodology, Experimental Results and Discussion are 

presented in Section 4. Section 5 presents the paper conclusion. 

 

2.0    RELATED RESEARCH 

For modeling a large number of temporal sequences, HMM can be an excellent 

tool, because it has been widely used for pattern matching in speech recognition 
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(Rabiner, 1989), image identification (Bunke, 2001), and network attacks 

(Cuppens, 2001). Warrender et al., (1999)  introduced HMM into anomaly 

detection for the first time. If an attack is considered to be a pattern of an 

observed sequence, HMM will be appropriate for mapping those patterns to one 

of many attack states. Several researchers have used HMM in one form or the 

other to either detect or predict network attack. Some of such works are discussed 

below: 
 

Berezinski et al., (2015) using data mining techniques proved that an entropy-

based approach is suitable to detect modern botnet-like malware based on 

anomalous patterns in the network. 
 

Saini et al., (2014) gave a comprehensive review of works that deployed HMMs 

in network attacks detection and prediction. 
 

Agarwal et al., (2012) proposed a hybrid model that combines entropy-based IDS 

with Support Vector Machine-based system to detect network attack. DARPA 

dataset was used in evaluating the model. It was established that the hybrid model 

give fewer false alarm. 
 

Sendi et al., (2012) worked on an HMM architecture to predict intrusions and 

trigger good response strategies. A novel alert correlation was employed in 

decreasing false negatives in the prediction. Experimental results on the DARPA 

2000 data set showed that the model can perfectly predict DDoS attacks and has a 

potential to detect multi-step attacks missed by the detection component. 
 

3.0      RESEARCH METHODOLOGY  

As mentioned earlier, in this research, we aim at improving the computational 

time of the original HMM algorithm. This is achieved by combining KLD and 

HMM algorithms to predict DDoS attacks. This section briefly presents the 

research model of this study and the proposed procedure for prediction.  
 

Our research methodology consists of four major steps: in the first step, the 

network states are defined by means of clustering the traffic of the network. In the 

second step the initial probability distribution, the state transition probability and 

the emission transition probability of the HMM is built based on the definitions 

got from Step 1. In the third step the HMM is trained using the DARPA 2000 

intrusion data set after which two sets of test data (DARPA 1999 no attack data 

set and simulated real time data set) are used to test the model and make 

predictions. In the fourth step KLD was used to reduce the observables state space 
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of the HMM using the algorithm in Fig. (4). This enhanced model was also 

trained and used for prediction. Finally the results and computational efficiency of 

the two models were compared. Fig. (1) is a pictorial overview of the proposed 

model. 

 

3.1     Step 1: Defining the Network States  

This step extracts the desirable features of the temporal network data using the 

Shannon Entropy (Berezinski et al., 2015).  

 

3.1.1 Shannon Entropy. 

The definition of entropy as a measure of disorder comes from thermodynamic 

and was proposed in the early 1850s by Clausius et al., (as cited in Berezinski et 

al., 2015). Shannon (1948) adopted entropy to information theory as a measure of 

the uncertainty associated with a random variable. The more random the variable, 

the bigger the entropy and vice versa. For a probability distribution p(Y = yi) of a 

discrete random variable Y, the Shannon entropy is defined as: 
 

 
Fig. 1: Model architecture 
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Hs(Y) =  i)loga         (1) 

 

Y is the feature that can take values {y1 … yn} and p(yi) is the probability mass 

function of outcome yi. The entropy of y can also be interpreted as the expected 

value of loga  

 

where Y is drown according to probability mass function p(y). Depending on the 

base of the logarithm, different units such as bits (a = 2), nats (a = e) or hurtleys 

(a = 10) can be used. For network attack detection/prediction, typically sampled 

probabilities estimated from a number of occurrences of yi in a time window t are 

used. The value of entropy depends on randomness and the value of n. In order to 

measure randomness only, normalized forms, as used in this paper, have to be 

employed. For example, an entropy value can be divided by n or by maximum 

entropy defined as loga(n). See Fig. (2) below for the algorithm for calculating 

normalized entropy. 

 

After this, K-means clustering algorithm is applied to classify the network 

behaviour into states. Six states were generated for our work and as a result, the 

state of each observation can be represented by the cluster it belongs to. 

 

 
Fig. 2: Normalized entropy calculation algorithm 
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3.2 Step 2: Estimating Model Parameters 
Here, the HMM parameters were estimated from the training data set (DARPA 

2000 data set). It should be noted that the model formulated here has six hidden 

states and six observable symbols. 

 

3.2.1 Hidden Markov Model (HMM) 

HMM, the simplest form of Dynamic Bayesian Network (DBN), is a doubly 

stochastic process: an unobservable (hidden) process S, which can only be 

observed through another (observable) stochastic process O. Each state in Q (the 

set S of hidden states) has state-transition probabilities (which are not visible) and 

a probability distribution over the possible values of O. The basic assumption in 

HMM is that the current hidden state of the system is affected only by its previous 

state.  

 

An HMM is characterized by the following: 

1)  A finite set of N states (S = {s1, s2, …, sN}). The states used in this paper 

corresponds to the phases of DDoS attack as listed in Section 1.0 above denoted 

by I, P, B, T and D respectively. A normal state, N, indicating that there is no 

malicious activity or any attempt to break into the system is added to the states. 

So, Si = (s1 = N; s2 = I; s3 = P; s4 = B; s5 = T; s6 = D) 

 

The relationship among these states is as diagrammatically shown in Fig. (3) 

below: 

 

 

 

 

 

 
Fig. 3: Hidden Markov models states for prediction 

 

2)   A finite set of M possible symbols (O = {o1, o2, o3,…, oM}). In our case, 

the first six of the features from the network traffic as listed in Section 1.0 above 

within certain time interval are the observations denoted by IS, ID, PS, PD, PT, 

PO respectively. 

 

3)  State Transition Probability (Aij): A square matrix where aij is the 

probability that the system goes from state si to sj 

N D T B P I 
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4)  Emission Transition Probability (Bj(k)): A rectangular matrix where bj(ok) 

is the probability that the symbol ok is emitted when the system is in state sj.  

 

5)  Initial State Probability (πi): a row vector depicting the probability that the 

system starts in state si. 

 

Since the states and output sequence are understood, it is customary to denote the 

parameters of an HMM by λ = (A, B, π). 

 

One of the aims of using an HMM is to deduce the likelihood of an attack of a 

specific type, given the set of observables contained in an example corresponding 

to an attack (Saini, 2014). 

 

3.3   Step 3: Model Training and Testing 
The model formulated in Step 2 is then trained until convergence. Then the two 

sets of test data as mentioned before were used to test the model and make 

predictions.  

 

3.4  Step 4: Reducing the Observable States Space of the Model 

3.4.1 Kullback-Liebler divergence method. 

For discrete probability distributions P and Q, the KLD of Q from P is defined to 

be:  

  (Aczél & Daróezy, 1975)   (2) 

It can be described as the expectation of the logarithmic difference between the 

probabilities P and Q, where the expectation is taken using the probabilities P. 

The KLD is only defined if Q(i) = 0⇒P(i) = 0, for all i (absolute continuity). If 

the quantity 0ln0 appears in the formula, it is interpreted as zero since 

 (Aczél & Daróezy, 1975). 
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Fig. 4: Implementation of KLD algorithm for HMM observable symbols  
 

Here, the KLD was used to reduce the number of observable states of the HMM 

using the algorithm in Fig. (4). The newly obtained HMM was also trained and 

used for prediction as in Step 3 above.  

 

The results obtained from the two models were then compared. 

 

4.0  EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, the experimental results of the system is evaluated. The training 

and test data are available at http://www.ll.mit.edu/IST/ideval/data/2000/2000_ 

data_index.html, https://www.ll.mit.edu/ideval/data/. 

 

4.1  HMM Parameters  
At first, that is, at system start-up,  π = (1, 0, 0, 0, 0, 0), which implies that the 

system is in the normal state with 100% probability. Next the state transition 

probability (A), which is a 6 X 6 matrix and the emission probability matrix (B), 

also a 6 X 6 matrix was estimated from the temporal network.  

 

The HMM, λ = (A, B, π), was trained using Baum-Welch algorithm (Ibe, 2013), 

the model converged after 90 iterations. Two sets of test data, as earlier 

mentioned, were run through the model for prediction using Viterbi algorithm 

(Ibe, 2013). Fig. (6) and Fig. (7) show the results of the convergence rate 

compared with that of the KLD-enhanced model. 

 

4.2  KLD Enhanced-HMM Parameters 

The π, initial probability distribution, and the state transition probability (A) 

remained the same as in the original HMM above. However, the probabilities of 
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the observable states space is reduced using the algorithm in Fig. (4) above. The 

results obtained showed that three of the observables namely: entropy of source 

IP (SI), entropy of destination IP (DI) and Occurrence rate of Protocol (PO) can 

be used to represent the system. Fig. (5) shows the relative entropy distribution of 

the reduction process. The resulting emission probability matrix (B) is a 6 X. 3 

matrix. 

 

The new model, like the original HMM, was likewise trained and used for 

prediction using the same sets of data. It was observed that the new model 

converged faster (after 60 iterations) than the previous one. See Table (1), Fig. (6) 

and Fig. (7).  

 

 
Fig. 5: Relative entropy distribution of the observable state space 
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Fig. 6: Comparison of the rate of convergence of the two models  

 

Table (1) shows the performance benchmark of the two models as defined by 

Kumar (2014) and Wu & Banzhaf (2010). It was observed that the KLD-HMM 

model converges faster, (after about 60 iterations in 59.53 seconds) than the 

HMM that converged after about 200 iterations in 714.90 seconds. The confusion 

matrices, which represent true and false classification results (Kumar, 2014) of 

the KLD-HMM and HMM models are given by  

respectively. This means that the KLD-HMM model has 84% true 

positive rate (TPR), 16% false negative rate (FNR), 79% true negative rate (TNR) 

and 21% false positive rate (FPR) with prediction accuracy at 82% while the 

HMM model has 77% true positive rate (TPR), 23% false negative rate (FNR), 

71% true negative rate (TNR) and 29% false positive rate (FPR) with prediction 

accuracy at 74%. See Table (1). 

 

 

 

 

 

 



Unilag Journal of Medicine, Science and Technology (UJMST) Vol. 5 No 1, 2017 

 

 

148 

Table 1: Performance benchmark of the models 
 

MODELS 

 

Computational 

time in seconds 

True 

Positive 

Rate 

(TPR) 

False 

Negative 

Rate 

(FNR) 

False 

Positive 

Rate 

(FPR) 

True 

Negative 

Rate 

(TNR) 

Accuracy 

KLD-HMM 59.53 0.84 0.16 0.21 0.79 0.82 

HMM 714.90 0.77 0.23 0.29 0.71 0.74 

 

Fig. (8), the Receiver operator characteristics (ROC) curve of the test data, is a 

graphical metric that illustrates the performance of a classifier which in our case 

is an HMM model that classifies Packet sequence as Threat or Normal traffic. The 

plot shows the rate of prediction as against false alarm rate. The curve with the 

continual variation depicts the plot of the HMM model and it shows an 

approximate variation between false and true classification of sequence packet 

data. The other curve representing the KLD-enhanced HMM model shows a less 

accurate detection rate initially until a threshold (around 0.005) is overcome 

where the performance of the model becomes excellent. 

 

In the implementation of a DDoS attack Prediction System, this threshold value 

that translates to an improved performance should be taken into account when 

developing such systems. 

 

 
Fig. 7: Frequency distribution per              Fig. 8: ROC curve of the performance 

            state of the two models              of  the two models 

 

5.0    CONCLUSION  

In this paper, we presented an architecture to predict DDoS attack. Our 

experimental results on the DARPA 2000 data set have shown that our model 

converges faster, which means computational efficiency, and shows good 
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performance in predicting the attacks. In future we will further improve our 

model by optimising the training algorithm, Baum-Welch, using a technique that 

will make it converge to global maxima. We also plan, if possible, to interface our 

system with live data in real time. 

 

REFERENCES 

Aczél, J. & Daróezy, Z. (1975). On measures of information and their 

characterizations, New York-San Francisco-London. Academic Press. 

XII, 234 S., (Mathematics in Science and Engineering 115) 

Afolorunso, A. A., Abass, O., Longe, H. O. D. & Adewole, A. P. (2016), 

Forecasting Distributed Denial Of Service Attack Using Hidden Markov 

Model, A paper accepted for publication in International Journal of 

Biological and Physical Sciences. Published by Faculty of Pure and 

Applied Sciences, LAUTECH. Website: www.sciencefocusngr.org 

Agarwal, B. & Mittal, N.  (2012). Hybrid Approach for Detection of Anomaly 

Network Traffic using Data Mining Techniques, Procedia Technology, 

6(2012), 996-1003. 

Badajena, J. C.  & Rout, C. (2012).  Incorporating hidden Markov model into 

anomaly detection technique for network intrusion detection. International 

Journal of Computer Applications. 53, 42-47. 

Berezinski, P., Jasiul, B. & Szpyrka, M.  (2015). An entropy-based network 

anomaly detection method. Entropy 2015, 17, 2367-2408. 

doi:10.3390/e17042367 

Bunke, H. & Caelli, T. (Eds.). (2001). Hidden Markov models: Applications in 

computer vision. World Scientific, Series in Machine Perception and 

Artificial Intelligence, 45. 

Cheng, X. & Yangdan, N. (2012). The research on dynamic risk assessment based 

on hidden Markov models. International Conference on Computer 

Science & Service System (CSSS). 1106-1109. doi:10.1109/CSSS.2012 

.280 

Cuppens, F. (2001). Managing alerts in a multi-intrusion detection environment. 

In ACSAC '01 Proceedings of 17th Annual Computer Security 

Applications Conference. Retrieved from 

https://www.acsac.org/2001/papers/70.pdf 

Dorogovs, P., Borisov, A. & Romanovs, A. (2011). Building an intrusion 

detection system for it security based on data mining techniques. Scientific 

Journal of Riga Technical University, 49,  43-48.  



Unilag Journal of Medicine, Science and Technology (UJMST) Vol. 5 No 1, 2017 

 

 

150 

Flores, J. J., Antolino, A. & Garcia, J. M.  (2010). Evolving hidden Markov 

models for network anomaly detection. Sixth International Conference on 

Networking and Services (ICNS). doi: 10.1109/ICNS.2010.44. 

Haslum, K., Moe, M. E. G. & Knapskog S. J. (2008). Real-time intrusion 

prevention and security analysis of networks using HMMs. 33rd IEEE 

Conference on Local Computer Networks, Montreal, Canada. 

doi: 10.1109/LCN.2008.4664305 

Ibe, O. C. (2013). Markov processes for stochastic modelling (2
nd

 ed.). 

Burlington, MA: Elsevier Academic Press. 

Kumar, G. (2014). Evaluation metrics for intrusion detection systems - A study. 

International Journal of Computer Science and Mobile Applications, 

2(11), 11-17 

Lee, K., Kim, J., Kwon, K. H., Han, Y. & Kim, S. (2008). DDoS attack detection 

method using cluster analysis. Expert Systems with Applications. 34, 

1659-1665. 

Liao, S. H., Chu, P. H. & Hsiao, P. Y. (2012). Data mining techniques and 

applications; A decade review from 2000 to 2011. Expert Systems with 

Applications, 39, 11303-11311.  

MIT Lincoln Lab (1999). DARPA intrusion detection scenario specific datasets. 

Available at <http://www.ll.mit.edu/IST/ideval/data/1999/1999_data_ 

index.html>. 

MIT Lincoln Lab (2000). DARPA intrusion detection scenario specific datasets. 

Available at <http://www.ll.mit.edu/IST/ideval/data/2000/2000_data_ 

index.html>. 

Rabiner, L.R.  (1989). A tutorial on hidden Markov models and selected 

applications in speech recognition. Proceedings of the IEEE, 77(2), 257–

286. 

Saganowski Ł., Goncerzewicz M. & Andrysiak T. (2013). Anomaly detection 

preprocessor for SNORT IDS system. In: Choraś R. (Eds.) Image 

Processing and Communications Challenges 4. Advances in Intelligent 

Systems and Computing, Springer, Berlin, Heidelberg. 184, 225-232. 

doi: 10.1007/978-3-642-32384-3_28 

Saini, P. & Godara, S.  (2014). Modelling intrusion detection system using hidden 

Markov model: A review. International Journal of Advanced Research in  

Computer Science and Software Engineering, 4(6), 542-547. (Available 

online at: www.ijarcsse.com ) 

Satpute, K., Agrawal, S., Agrawal, J., & Sharma S. (2013). A Survey on 

Anomaly Detection in Network Intrusion Detection System Using 

Particle Swarm Optimization Based Machine Learning Techniques. In: 



Unilag Journal of Medicine, Science and Technology (UJMST) Vol. 5 No 1, 2017 

 

 

151 

Satapathy S., Udgata S., & Biswal B. (Eds.). Proceedings of the 

International Conference on Frontiers of Intelligent Computing: Theory 

and Applications (FICTA). Advances in Intelligent Systems and 

Computing. Springer, Berlin, Heidelberg. 199, 441-452. 

Sendi, S., Dagenais, M. Jabbarifar, M. & Couture, M.  (2012). Real time intrusion 

prediction based on optimized alerts with hidden Markov model. Journal 

of Networks, 7(2), 311-321. 

Seng, J. L. & Chen, T. C. (2010). An analytic approach to select data mining for 

business decision. Expert Systems with Applications, 37, 8042-8057.   

Shannon, C. (1948). A Mathematical Theory of Communication. Bell Syst. Tech. 

J. 27, 379–423. 

Sharma, S. & Gupta, R. K. (2015). Intrusion detection system: A review. 

International Journal of Security and Its Applications 9(5), 69-76. 

Shin, S., Lee, S., Kim, H. & Kim, S. (2013). Advanced probabilistic approach for 

network intrusion forecasting and detection. Expert Systems with 

Applications. 40, 315-322. 

Sodiya, A. S., Longe, H. O. D. & Akinwale, A. T. (2004). A new two-tiered 

strategy to intrusion detection. Information Management and Computer 

security, 12(1), 27 - 44. 

Sodiya, A. S., Adeniran, O. & Ikuomola A. J. (2007).  An expert system-based 

site security officer, Journal of Computing and Information Technology - 

CIT 15(3), 227–235. 

Warrender, C., Forrest, S.  & Pearlmutter, B. (1999). Detection of intrusion using 

system calls: Alternative data models[C]. IEEE Symposium on Security 

and Privacy. IEEE Computer Society 

Wu S. X. & Banzh F. W. (2010). The use of computational intelligence in 

intrusion detection systems: A review. Applied Soft Computing Journal, 

10(1), 1-35 

Zhang, X., Jia, L., Shi, H., Tang, Z. & Wang, X. (2012). The application of 

machine learning methods to intrusion detection. Congress on 

Engineering and Technology (S-CET), Spring, 1-4. 

doi: 10.1109/SCET.2012.6341943 

 


