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ABSTRACT 
Model selection, sometimes, referred to as variable selection, is the process of 

selecting a subset of independent variables for use in model building. Variable 

selection arises when one wants to model the relationship between a variable of 

interest and a subset of potential explanatory variables or predictors, but there is 

an uncertainty about which subset to use. Identifying the best subset among many 

variables is one of the hardest parts of model building process. The purpose of this 

article is to understudy some of the widely used variable selection techniques, and 

to apply these techniques to predicting the delivery week of a current pregnancy 

based   on some anthropometric parameters. Random sample of two hundred 

expectant mothers were available and their anthropometric parameters of interest 

were extracted from their record in the gynaecological section of Lagos University 

Teaching Hospital (LUTH). The findings reveal that the ”best” model for 

predicting the delivery week of a current pregnancy is the model with the three 

predictors: Height of the expectant mother, Cervical length and Human Chorionic 

Gonadotropin (HCG). 

 

Keywords: Variable selection, Anthropometric parameters, Predictors, Model 

building. 

 

INTRODUCTION 
Building statistical model of response as a function of multiple explanatory 

variables is an important part of any statistical analysis and a common practice in 

various professions.  However, a fundamental difficulty   in statistical modeling is 

the choice of an appropriate model. This problem arises when a statistical model 

contain many parameters and one is confronted with the choice of selecting which 

measures are important in predicting the outcome variable.  For example, suppose 

Y is the response variable and x1, x2 …,xp is a set  of potential explanatory variables 

which are made up of vectors of n observations. The problem of variable selection 

arises when one want to model the relationship between Y and a subset of x1, x2…        

,xp, but there is uncertainty about which subset to use.   Such a situation is 
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particularly of interest when parameter is large and x1, x2 …,xp is thought to contain 

many redundant variables. Leaving out important covariates introduces bias into 

the parameter estimates, while including unimportant variable weakens the 

prediction capability of the model. 

 

Model selection procedures have been developed to address the situation. Variable 

selection  and  model- building techniques are used to identify  the  best  subset  of  

predictors  to  be  include  in  a  regression  model.  The procedures identify a small 

group of regression models that are “good” according to a specified criterion. A 

detailed examination can be made of a number of the more promising or 

“candidate” models, leading to the selection of the final regression model to be 

employed. 

 

There are two approaches to the selection of independent variables. The first 

approach considers all possible regression models that can be developed from the 

pool of potential independent variables and identifies subsets of the independent 

variables which are “good” according to a criterion specified by the investigator. 

The second approach employs automatic search procedures to arrive at a single 

subset of the independent variable. Once a few subsets have been identified as 

“good” ones, a final choice of the model must be made. 

 

This choice is aided by residual analyses and examinations of the influential 

observations for each of the competing models. Information from this analysis, 

together with prior knowledge of the phenomenon study, will be helpful in choosing 

the final regression model to be employed (Michael et al., 2005) 

 

LITERATURE REVIEW 

A number of studies have attempted to developed criteria for selecting a statistical 

model from set of candidate models, given data. The earliest developments of such 

selection criteria were based on attempts to minimize the mean squared error 

prediction. The most familiar of these criteria is the Mallows Cp. Mallow’s (1973) 

recommended using Cp plots to help gauge subset selection ( see also Mallow, 

1995). Two of the other most popular criteria, motivated from different viewpoints, 

are the Akaike Information Criteria (AIC) and the Bayesian Information Criteria 

(BIC). Edward (2008), showed that if iˆr denote the maximum log-likelihood of the 

Yth model, AIC select the model that maximizes (iˆr − qr), whereas BIC selects the 

model that maximizes (iˆr − (logn)qr/2). 
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Min and Guogiang (2000) examined model selection criteria for neural network 

time series forecasting. The authors showed that BIC imposes greater penalty for 

model complexity than AIC. Hence the use of BIC for model selection results in a 

model whose number of parameters is no greater than that chosen by AIC. BIC 

gives a consistent estimate of the order of AR model than AIC. Thus in a real life 

application, BIC is often preferred to AIC since it is more reliable criterion for 

model selection. 

 

This paper provides an overview of some variable selection techniques with 

application to predicting the delivery week of a current pregnancy. The use of 

variables to predict the delivery week of current pregnancy has got the attention of 

many researchers in recent years. For example, Ramanathan et al. (2003) examined 

the potential value of routine measurement of cervical length in singleton low-risk 

pregnancies at 37 weeks of gestation in the prediction of onset and outcome of 

labor. The result from the study revealed that measurement of cervical at 37 weeks 

can define the likelihood of spontaneous delivery before 40 weeks and 10 days. 

 

Wozniak et al. (2014) estimated the potential value of elastographic evaluation 

internal cervical OS stiffness at 18 - 22 weeks of pregnancy in low risk, 

asymptomatic women in the prediction of spontaneous preterm delivery. 

Mariorosaria et al. (2015) determine the relationship between cervical dilation and 

time of delivery in women with preterm labor. The finding showed that dilation of 

the cervix and gestation age at admission is associated with the time interval of 

delivery in women with preterm labor. 

 

This paper contributes to several existing work in this area. It understudies some 

variable selection techniques and applies these techniques to predicting the delivery 

weeks of a current pregnancy using relevant data from Nigeria. 

 

METHODOLOGY 
This study relies on data from the qynecological section of Lagos University 

Teaching Hospital. Random sample of two hundred expectant mothers were 

available and their anthropometric parameters of interest were extracted from their 

records. These parameters includes; the delivery week (Y ), age of expectant mother 

(X1), weight of expectant mother (X2), height of expectant mother (X3), foetus age 

(X4), cervical length (X5), and cervical width (X6) of expectant mother and human 

chorionic gonadotropin (X7). These variables constitute pool of potential 

explanatory variables for a predictive regression model. The response variable is 

delivery week Y. A first-order multiple liner regression model based on all the 
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predictor variables was fitted to serve as a starting point. The full model is given by 

model (1) 

 

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7                    (1) 

 

The next stage in the model-building process is to examine whether all these 

potential predictor variables in model (1) are needed or whether a subset of them is 

adequate.  Subset of model (1) was obtained using R statistical software with the 

“leaps function” and the result is shown in Table 1. From the possible model 

identify in model (1), we need to determine one predictor model that do the “best” 

at meeting some well-defined criteria. 

 

Criteria for Model Selection 

There are good numbers of criteria for comparing the various regression models in 

all-possible-regression selection procedure. In this section, we consider five of the 

most commonly used measures, namely; R-square (R2), Adjusted R-Square (R2), 

Mallow’s Cp statistic (Cp), Akaike Information Criterion (AICp), Bayesian Criterion 

(SBCp

R-square (𝑅2): R-square is a measure of the proportion of variability in the data 

set that is accounted for by a regression model. It assumes that every independent 

variable in the model helps to explain variation in the dependent variable (Y) and 

thus gives the percentage of explained variation if all independent variables in the 

model affect the dependent variables (Iwundu and Efezino, 2015). The (𝑅2) 

criterion is given by the 

Statistic (2)  

 

𝑅2  =  
𝑆𝑆𝑅

𝑆𝑆𝑇𝑂
= 1 −  

𝑆𝑆𝐸

𝑆𝑆𝑇𝑂
        (2)

 

Where; 

SSR  is the regression sum of squares, 

SSTO is the total sum of squares 

SSE is the error sum of squares 

R-Square value increases as more variables are added to the model, thus it make no 

sense to define the “best” model as the model with the largest R-Square value. 

However, the R- square statistic can be used to find the point where adding more 

predictors is not worthwhile, because it yields a very small increase in R-Square 

value. 
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 Adjusted R-Square (𝑅𝑎𝑑𝑗
2 ) : The 𝑅𝑎𝑑𝑗

2  tells us the percentage of variation 

explained by only those independent variables that truly affect the dependent 

variable (𝑌) and penalizes for adding independent variable(s) that do not belong to 

the model (Iwundu and Efezino, 2015). These selection procedures do not take 

account of the number of parameters in the model. The adjusted R – square is 

defined by the statistic (3) 

 

𝑅𝑎𝑑𝑗
2  = 1 (

𝑛−1

𝑛−𝑝
) (

𝑆𝑆𝐸

𝑆𝑆𝑇𝑂
) = 1 − (

𝑛−1

𝑆𝑆𝑇𝑂
) 𝑀𝑆𝐸           (3)

 

Since max(R2) can never decrease as p increases, the adjusted coefficient of the 

multiple determination adjusted R- square has been suggested as an alternative 

criterion. The best model according to the criterion is the model with the largest R 

– square value. Notice from equation (3) that the adjusted R- square value is a 

function of Mean Square Error (MSE) and the MSE given by 

𝑀𝑆𝐸 =  
𝑆𝑆𝐸

𝑛−𝑝
                                                                       (4)

 

Quantifies how far away over predicted responses are from our observed responses. 

Naturally, we want this distance to be small.  From (3), it is obvious that the adjusted 

R = square increases only if MSE decreases.  Thus,   the best regression model is 

the one with the smallest MSE value. 

 

Mallow’s Cp statistic: The Cp statistic is a criteria to asses fits when models with 

difference numbers of parameters are being compared. The criteria addresses the 

issue of over fitting, in which model selection statistics such as the residual sum of 

squares always get smaller as more variables are added to the model. Mallow’s Cp 

is defined by the statistic 

 

𝐶𝑝 = 𝑝 +  
(𝑀𝑆𝐸𝑝−𝜎2)(𝑛−𝑝)

𝜎2                                                                                         (5)  
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Where MSEp is the mean square error from fitting model containing subset of p − 

1 predictors. In using the Cp criterion, we seek to identify subsets of X variable for 

which (i) the Cp value is small and (ii) the Cp value is near p. Subsets with small Cp 

values have small total mean square error. 

 

Akaike Information Criterion and Schwarz’ Bayesian Criterion: Akaike 

Information Criterion (AICP ) and Schwarz’  Bayesian Criterion (SBCp) are two 

popular selection criteria that penalize models  for adding predictors. AIC and SBC 

act as guard against over fitting. The more parameter you fit to your model, a 

penalty is imposed. The criteria are defined as 

 

AICp = nlnSSEp – nlnn + 2p 

 SBCp = nlnSSEP –nlnn + [lnn]      (6) 

 

where n is the sample size. Since there are 2p−1 to consider among p − 1 potential 

variables, obtaining AICp or SBCp for each model can become very tedious and time 

consuming. One way around this is to use the stepwise regression. The stepwise 

type procedures are based on three different strategies, namely, Forward Selection 

(FS), Backward Elimination (BE) and Stepwise Regression (SR). 

 

Forward stepwise selection adds one variable at a time based on the lowest residual 

sum of squares until no more variables continue to lower the residual sum of 

squares. Backward stepwise regression starts with all variables in the model and 

removes variables one at a time. Stepwise regression is the modification of forward 

selection. The procedure involves the reevaluation of all regressors that previously 

entered into the model via their partial F-statistic. A regressor added at an earlier 

step may be consider redundant due to the relationship between it and regressors 

now in the model. The procedure requires two cut-off values Fin and Fout. If the 

partial F-statistic for a variable is less than Fout, that variable is dropped from the 

model. 

 

RESULT AND DISCUSSION 

Data analysis was performed using R statistical software. The summary of the 

results is shown in Table 1. 

The best model according to R – square and adjusted R - Square is the model with 

the two predictors; height of expectant mother and human chorionic gonadotropic. 

Using the Mallow’s Cp criterion, the model with the smallest Cp (Cp = 4.2047) is 

the model with the predictors height of the expectant mother and human chorionic 

gonadotropic. 
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The forward and backward regression identifies the best model as one which 

includes height of the expectant mother, cervical length and human chorionic 

gonadotropic. However, the stepwise regression picks the model with only age of 

the expectant mother and chorionic gonadotropic. The result for stepwise regression 

(SR) is shown on Table 2. The stepwise regression procedure eliminates the 

variable X2, X3, X4, X5, X6 leaving X1 and X7. However, one limitation of the 

stepwise regression search procedure is that it presumes there is a single “best” 

subset of X variables and seek to identity it. But in reality there is often no “best” 

subset. Hence, it was suggested that all possible regression models with similar 

number of X variables as in the stepwise regression solution should be fitted to study 

whether some other subsets of X variable might be better. 

 

Thus, in line with this suggestion and since most existing literatures found cervical 

length to be a significant variable in predicting current pregnancy ( Ramanathan et 

al. (2003), Wozniak et al. (2014)), couple with the principle that the number of 

predictors be kept to a limited number consisting of three to six ”good” subset 

(Michael et al., 2005), we decided to keep the three variables X3, X5, X7 in our final 

model. The model with the three predictor variables was fitted in R with the residual 

plot shown in Figure 1. The reduced model is given by model (7) 

 

Y = β0 + β3X3 + β5X5 + β7X7      (7) 

 

Table 1: R2, R2 , Cp, values for All Possible Regression Model (1) 

 

Variables 

in Model 

P       
2

pR  
2

,paR  pC  
Variables in Model 

P             
2

pR  
2

,paR  
pC  

X1 1 0.000214 0.0028 99.6796 X4X6X7 3 0.3423 0.3288 4.880 

X2 1 0.02815 0.0022 99.4802 X4X5X6X7 4 0.3420 0.3285 4.9559 

X3 1 0.0130 0.0.0080 96.4507 X3X5X6X7 4 0.3420 0.3285 4.9636 

X4 1 0.0561 0.0.0513 83.6992 X3X4X5X7 4 0.3397 0.3261 5.6486 

X5 1 0.00548 0.0499 84.1133 X1X3X5X7 4 0.3380 0.3244 6.1371 

X6 1 0.00047 0.0045 100.1739 X2X3X5X7 4 0.3359 0.3223 6.7677 

X7 1 0.3008 0.2972 11.1951 X1X3X4X7 4 0.3351 0.3214 7.0085 

X5X7 2 0.4545 0.4331 660.933 X1X5X6X7 4 0.3349 0.3213 7.0614 

X3X7 2 0.3081 0.3011 11.0103 X2X4X5X7 4 0.3338 0.3201 7.3868 

X1X7 2 0.3037 0.2967 12.2977 X2X5X6X7 4 0.3311 0.3174 8.1810 

X6X7 2 0.3030 0.32959 12.5246 X1X2X5X7 4 0.3498 0.3330 4.6542 

X4X7 2 0.3028 0.2958 12.5640 X3X4X5X6X7 5 0.3442 0.3273 6.2993 

X2X7 2 0.3016 0.2945 12.9367 X1X3X5X6X7 5 0.3438 0.3269 6.4192 
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X4X5 2 0.1213 0.1124 66.3616 X1X4X5X6X7 5 0.3438 0.3269 6.4374 

X3X5 2 0.0686 0.0591 81.9731 X1X2X3X4X7 5 0.3428 0.3259 6.7165 

X3X4 2 0.06512 0.0556 83.0183 X2X4X5X6X7 5 0.3421 0.3251 6.9229 

X4X6 2 0.06460 0.0551 83.1665 X2X3X5X6X7 5 0.3421 0.3251 6.9322 

X3X7 2 0.3378 0.7277 4.2047 X2X3X5X6X7 5 0.3399 0.3229 7.5749 

X3X4X7 3 0.3347 0.3245 5.1272 X1X2X3X5X7 5 0.3361 0.3190 8.6993 

X4X5X7 3 0.3336 0.3234 5.4619 X1X2X4X5X7 5 0.3354 0.3182 8.9231 

X5X6X7 3 0.3310 0.3208 6.2200 X1X2X5X6X7 5 0.3520 0.3318 6.0014 

X1X5X7 3 0.3298 0.3196 6.5615 X1X3X4X5X6X7 6 0.3498 0.3298 6.6534 

X2X5X7 3 0.3120 0.3015 11.8512 X1X3X4X5X6X7 6 0.3498 0.3298 6.6534 

X1X3X7 3 0.3106 0.3001 12.2626 X1X3X4X5X6X7 6 0.3498 0.3298 6.6534 

X1X6X7 3 0.3097 0.2991 12.5266 X1X3X4X5X6X7 6 0.3498 0.3298 6.6534 

X3X4X7 3 0.3081 0.2975 13.0009 X1X3X4X5X6X7 6 0.3498 0.3298 6.6534 

X2X3X7 3 0.3068 0.2962 13.3758 X1X3X4X5X6X7X7 7 0.3498 0.3298 6.6534 

 

Table 2: Stepwise regression output for model (1) 

 

Initial model 

y = X1 + X2 + X3 + X4 + X5 + X6 + X7 

Final model 

y = X1 + X7 

Step DF Deviance Resid. DF Resid. Dev AIC 

 

1     92 299.9688 125.8308 

2 −X6 1 0.2782902 93 300.1871 123.9236 

3 −X2 1 0.3961992 94 300.5833 122.0555 

4 −X5 1 0.6693078 95 301.2526 126.2779 

5 −X3 1 1.1172117 96 302.3698 118.6481 

6 −X4 1 2.5102619 97 304.8801 117.4748 

 

The residual vs. fitted plot do not look as there appear to be pattern in the dispersion 

which indicates that constant error variance is apparent. In addition, some departure 

from normality is suggested by the normal probability plot of the residuals [Figure 

1]. Thus a weighted least square was employed as a remedial measure. 
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Figure 1:  Residual plot the reduced model 

 

CONCLUSION 
The adequacy of variable selection techniques on model-building was examined 

based on some anthropometrics parameter of two hundred expectant mothers to 

predict their delivery week. Five selection techniques (R - square, Adjusted R - 

square, Mallow’s Cp, AICp, SBCp) were employed and all the five selection 

procedures identify the best model as one with the three predictor: height of the 

expectant mother, cervical length and the human chorionic gonadotropin. The 

model summary with the three predictor variables shows that height of the 

expectant mother is not significant. However, we decided to retain height of the 

expectant mother in the model following the principle that the number of predictors 

be kept to a limited number consisting of three to six ”good” subset. 

 

The study did not consider interactions and quadratic terms in the model. Such 

terms have been found to be significant predictors; hence we suggest that the 

interaction and quadratic terms in model (1) be investigated. Based on our study, 

we recommends human chorionic gonadotropinic, cervical length and height of 

expectant mother as ”good” covariates in a regression model for predicting the 

delivery week of a current pregnancy. 
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