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ABSTRACT 
The objective of this paper is to capture the time-varying volatility in crude oil 

prices. The time-varying volatility dynamics are characterized by high volatility, 

high intensity jumps, and strong upward drift, indicating that oil markets were 

constantly out-of-equilibrium. The method of maximum likelihood and cumulants 

are utilized. The Jump-Diffusion model, generalized autoregressive conditional 

heteroskedasticity (GARCH) model and autoregressive model of order two 

(AR(2)) are used to empirically model the crude oil price (January, 1986-July, 

2015). The results show that the three models performed well in estimating the 

crude oil price. However, Jump-Diffusion model out-performed the other two 

models as it captures the drift as well as the jumps in the crude oil price within 

the sampled period. The results establish that commodity price risk plays a 

dominant role in the energy industries, and the use of derivatives has become a 

common means of helping energy firms, investors and customers to manage risks 

that arise from the high volatility. 
 

Key words: Volatility, Cumulants, Mean reversion, Diffusion process, Stochastic 

differential equation 

 

INTRODUCTION 
Oil embodies a vital role in the national and international economies as the 

backbone and the source of raw inputs for numerous industries. It is an important 

source of energy and represents indispensable raw material as a major component 

in many manufacturing processes and transportation fuel (Gabralla and Abraham, 

2013). Strong growth in the demand for oil worldwide, particular in China and 

other developing countries is generally accepted as a driving force behind the 

sharp price volatility seen over the past seven years. Oil prices tend to exhibit 

strong seasonal patterns in response to cyclical fluctuations in supply and demand 

mostly due to weather and climate changes (Krichene (2006), Agwuegbo et al., 

(2017)). Despite the sharp rises during short periods of such specific events, oil 
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prices usually revert to a normal level. This means, oil prices will fluctuate around 

and drift over time to values determined by the cost of production and the level of 

demand.  
 

The dynamics will essentially depend on the economic environment, in our case 

on conditions of the global oil market, like supply and demand. Especially, in the 

latest months of 2006 - 2009, there was a significant pressure primarily due the 

growing demand for crude oil from Asia driving the oil price to heights not 

reached ever before. However, within the natural zone, prices may strongly 

oscillate by crossing different domains of attractions several times mainly due to 

random perturbations (e.g. war or political or economic instabilities, or 

environmental conditions). While developments in crude oil prices were being 

followed closely by economic agents, including traders, investors, speculators, 

and policy makers, not much was known about the stochastic processes driving 

these prices. Crude oil prices, in spite of their importance, have recently attracting 

extensive academic and research works. The problems and techniques for 

construction of dynamical models from noisy chaotic time series is given to 

supplement existing surveys due to the use of a special systematization of the 

variety of problem settings and methods (Kantz and Schreiber (1997). 

Mathematical modelling is a rational approach to a better understanding of real 

processes, and in general an approximation to reality, which can help to analyze 

consequences of our assumptions on reality. 

 

RELATED WORK 
Several academic and commercial research teams are very active in the crude oil 

price dynamics such as high volatility, high intensity jumps, and strong upward 

drift, indicating that oil markets were constantly out-of-equilibrium. In global 

markets, oil is the most active and heavily traded commodity. Oil price suffer 

from high volatility and fluctuations. Andersen et al. (2007), Boudth et al. (2011), 

and Lee and Mykland (2008) assume that the log-prices are observed without 

measurement error. It is however more realistic to consider that the logarithm of 

the recorded asset price is actually the sum of the logarithm of the so-called 

“efficient” price and a noise component that is induced by microstructure 

frictions. Ait-Sahalia et al. (2011) divide the sources of microstructure noise into 

three groups: (i) frictions inherent in the trading process such as discreteness of 

price changes and rounding; (ii) informational effects such as the gradual response 

of prices to a block trade or inventory control effects and (iii) measurement or 

data recording errors such as prices entered as zero or misplaced decimal points. 

Wang et al. (2010) attributed the volatility of oil prices to three main factors: 

increase in demand and supply shortages possibly caused by economic growth or 
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the behaviours of oil producing countries; exogenous events such as wars, natural 

disasters, etc. and endogenous factors such as speculations in the markets. Ghosh 

(2001) investigates impact of crude oil shocks on exchange rate link for India and 

observed that an increase in the oil price return leads to the low price of Indian 

currency compare to the United States (US) dollar and oil price shocks have the 

continuous effect of exchange rate volatility.  
 

Generally, high crude oil prices directly affect the cost of gasoline, home heating 

oil, manufacturing and electric power generation. This makes the world to always 

in want of crude oil, so the needs for oil continue to the rise and production 

continues to fall in 1999, the price of crude oil ranged about $16 a barrel. Between 

2008 and 2009, the crude oil price passed the $100 a barrel and fluctuated 

between $147.96 and $69, (Gabralla and Abraham, 2013). These unprecedented 

shock and wide fluctuations have significant impact plus negative effects on 

petroleum exporting countries and consuming oil countries, (Gibson and 

Schwartz, 1990). Empirical studies strongly suggest that volatility is not constant, 

but has a random component. ARCH/GARCH models, whose continuous-time 

diffusion limits are stochastic volatility models, provide much better descriptions 

of the data. See Duffie and Singleton (2000).   
 

A generalized autoregressive conditional heteroskedasticity (GARCH) (1, 1) 

model is defined as follows:  The mean equation:  

),0(~,log 2

ttttt cSx   .         (1) 

The conditional variance equation: 
2

11

2

110

2

  ttt             (2) 

where ).( 22

tt   The parameters: 0,0 10    and 01   are strictly 

positive to ensure the positivity of the conditional variance, 
2

t . The GARCH (1, 

1) model captures the empirical characteristics such as the presence of skewness 

and kurtosis in oil price returns data where only the magnitude is considered and 

not the direction of the crude oil price. Since there is the presence of jumps in 

asset prices and for more accurate option pricing, we proffer a jump-diffusion 

process. Moreover, it is well-known that short-term options have market implied 

volatilities that exhibit a significant skew across strikes (Merton, 1976). The pure 

diffusion based models have difficulties explaining the similar effect in short-

dated option prices, thus there is need in adding a jump component in modelling 

asset price dynamics (Bakshi et al., 1977). Most importantly, the diffusion based 

stochastic volatility models cannot explain skewness in implied volatilities, except 

under implausible values for the model’s parameters. Models with jumps 
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generically lead to significant skews for short-term maturities. More generally, 

adding jumps to returns in diffusion based stochastic volatility model, the so-

obtained model can generate sufficient variability and asymmetry in the short-

term returns to match implied volatility skews for short-term maturities (Bates, 

1966).  

 

The key idea behind oil pricing models is to find partial differential equations that 

will solve for the price of oil futures contract. We restrict ourselves in this paper 

to a price dynamics modelled by just one stochastic differential equation with a 

stochastic volatility, controlled by a stochastic process. A first intuitive model for 

the dynamics of crude oil prices is a system of ordinary differential equations 

(deterministic approach): 

dttd ),,(             (3) 

Y(t) describes external, e.g. economic or political effects. The oil price X(t) is a 

solution of the ordinary differential equations (3). The function   could be a 

polynomial or a rational function in X with coefficients depending on t and X(t). 
 

Consider here a perturbation caused by adding to equation (3) a stochastic process 

as 

0),,(),,(  ttdWdttd          (4) 

where   is the mean-reverting,   is the degree of volatility around the mean 

which is caused by stochastic shocks (random fluctuations of the underlying 

process), W denotes a Wiener process (Brownian motion). The functions, )(  

and )(2   are called the drift and the diffusion functions of the price process. 

First of all, the functions   and   are unknown and need to be determined by 

modelling and by means of data. If equation (4) has a zero mean, the crude oil 

spot price dynamics is assumed to follow basically a Geometric Brownian motion 

(continuous-time) which is seen as a solution to stochastic differential equations 

(SDEs):  

0 tdWdtd          (5) 

where both   and   are constant. For any arbitrary initial value X0 = x0, the 

analytic solution is given as: 

0

2

)(
2

exp)( xtWtt 









 
           (6) 

In many cases, this approach yields to explicit solutions which we usually do not 

obtain for a more complex dynamics as observed in energy and commodities 
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prices that experience significant deviations from log-normality. To understand 

the price dynamics, it is worthwhile to analyze the ordinary differential equation 

that is focusing on the drift term. If X is higher (lower) than the long run 

equilibrium 1 , the sign is negative (positive). Thus, the price is always reverting 

to its attracting level. Market data indicate that volatility exhibits mean-reverting 

behavior and this led Stein and Stein (1991) to introduce the mean-reverting 

Ornstein-Uhlenbeck process. Mean reversion in commodity prices has an 

important effect beyond its immediate impact on returns since it suggests that the 

implied volatility of commodity options will exhibit a downward-slopping term 

structure. As a consequence, the mean reversion process is probably the most 

common price model used by oil market practitioners and is often convenient to 

be modeled as an Ornstein-Uhlenbeck process (Agwuegbo et al., 2017). When 

crude oil prices are relatively high, existing producers will increase their 

production rate and new producers will enter the market, whereas consumers will 

||at first replenish their stocks thereby, creating a downward pressure on prices. As 

long as the price is higher than the equilibrium price, this downward pressure is 

expected to last. Again, when prices are relatively low supply will decrease, since, 

for instance some of the high cost producers will exit the market and demand 

increases enforcing an upward pressure on prices. The Ornstein-Uhlenbeck 

process is somehow the most canonical choice for a random process and has been 

applied in finance and economics as the unique family of the continuous Markov 

processes with a stationary Gaussian distribution. In case of a constant volatility 

0),,(  t  we obtain the Ornstein-Uhlenbeck model. Equation (3) can be 

interpreted as an Ito stochastic differential equation 

 




t

KttK
sdWsKexet

0

000 )()exp()( 0            (7) 

Equation (7) is usually referred to as Langevin stochastic difference equation and 

a linear Ito stochastic differential equation; it is also a Gaussian process.  
 

Letting )log( tt S  and using Ito’s lemma, the log price return process becomes 

 ttttttt dJddtdJddtd   ][ 2

2
1

         
(8)  

where  2

2
1  . The parameter vector associated with the price process is 

therefore   ),,,,( 22   . Discretized over ),( tt , the model takes 

the form: 

 





t

i

itt J
0

                      (9) 
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where ),0(~   ttt and ttt    is the actual number of 

jumps occurring during the time interval ),( tt and tJ  are independently and 

identically distributed as  ),(~ 2iJ  . The log-return ttx   includes 

therefore the sum of two independent components: a diffusion component with 

drift and a jump component. Its probability density is a convolution of two 

independent random variables ( 2 and 2 ) and can be expressed as 
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(10) 

with ,2,1,0n   Putting 1 , i.e., the time interval is (t, t +1), the density 

function becomes 
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(11) 

 

Most modifications are concerning the modelling of the volatility function. A 

major approach in energy markets is the Pilipovic model. Pilipovic (1997) 

proposed a linear volatility function of the form:  0),,(  t . In addition, he 

allows the long-term equilibrium price X1 to be driven by a secondary stochastic 

differential equation leading to the following two-factor model: 

222222

1111211 )(

dWdtKd

dWdtKd








          (12) 

 

where 1,0, iK ii   are positive constants, and dZ  determines the stochastic 

perturbation in the equilibrium price. Both, a pure Geometric Brownian motion as 

well as a simple mean reversion model are not in part able to capture fundamental 

phenomena of energy and commodity markets, so an additional random jump 

component is added to equation (4) to obtain Jump-Diffusion (J-D) models: 
)(),,(),,(  dQJdWtdttd         (13) 

 

where J is the jump component and dQ is the Poisson process with parameter  . 

Its value depends on the probability of occurrence of a jump, the expected size, 

and their expected standard deviation. Again it is possible to work with different 

assumptions on drift and volatility functions. In this context of oil markets it 

seems to be reasonable to consider a mean reversion process. Accordingly, the oil 

price evolves with mean reverting drift and two random terms: a diffusion and a 
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Poisson process embodying a random jump, (Geman, 2005). The arrival of jumps 

is governed by a Poisson process dQ  with arrival frequency parameter, . The 

proportional jump size J may be a constant or drawn from a probability 

distribution. 
 

Accordingly, the continuous-time stochastic process driving crude oil prices can 

be stated as a J-D process given by a stochastic differential equation 

   ttt

t

t dJddt
S

dS
 1)exp(

                    

(14) 

where tS  denotes the crude oil price,   is the rate by which these shocks disperse 

and the process reverts towards the mean, Qin (2011) and 2  is the instantaneous 

variance. The continuous component is given by a standard Brownian motion, t  

distributed as ),0(~ dtd t  . The discontinuities of the price process are 

described by a Poisson counter t , characterized by its intensity  , and jump size 

tJ . The Brownian motion and the Poisson process are independent. The intensity 

of the Poisson process describes the mean number of arrivals of abnormal 

information per unit of time is expressed as dtt  ]1Pr[  and 

dtt  1]0Pr[  (Krienchene, 2006). When abnormal information arrives, 

crude oil price jumps from tS  to  ttt SJS )exp( . The percentage change is 

measured by  1)exp( tJ . The jump size tJ , is independent of t  and t , and is 

assumed to be normally distributed ),(~ 2tJ .  

 

METHODOLOGY 
The paper uses the maximum likelihood estimation and the method of cumulants 

as main tool for estimating markets of commodities of crude oil price. Since the 

maximum likelihood of   in (14) is a simple transformation of the least squares 

estimator of the autoregressive coefficient in the first-order autoregressive 

(AR(1)) model with discrete data, the study intrinsically is related to the vast 

literature studying the finite-sample distribution of the AR(1) process. The model 

strategy involves identification, parameter estimation and diagnostic check, Box 

and Jenkins (1970). The maximum likelihood method and the method of 

cumulants adapted in estimating Jump-Diffusion model filters for crude oil price 

are: 
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(i) The maximum likelihood method: The maximum likelihood (ML) approach 

has appealing properties and is the most efficient under general conditions 

(Ibragimov and Hasminskii 1979). Let },,,{ 21  xxxx   be an observed 

sample of log returns and f(x), the density, then the log-likelihood function can be 

expressed as: 
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(15) 

 

Application of the maximum likelihood method for estimating the J-D model has 

met with difficulties arising mainly from the identification of the jump parameter 

and instability of parameter estimates (Krienchene, 2006). Nonetheless, Ball and 

Torous (1983) applied directly the ML method by truncating the number of jumps 

at n = 15. They also applied the ML method by assuming a Bernoulli process for 

the jump component. While the ML estimates achieve the lower bound for 

Cramer-Rao efficiency criterion, difficulties with the likelihood function arising 

from computational tractability, un-boundedness over the parameter space, and 

instability of parameters, have led researchers to explore alternative estimation 

methods, based essentially on the method of moments. 

 

(ii) The method of cumulants: Suppose that X is a real random variable whose 

real moment generating function is defined as   

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where )(f  is the probability density of X. Just as the moment generating 

function M of X generates its moments, the logarithm of M generates a sequence 

of numbers called cumulants. The cumulants nK  of the probability density of X 

are given by  
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(16) 

where )( n

nm   is the moment of order n of X. The left-hand side of this 

equation is the moment-generating function, so 
!n

K n
 is the nth coefficient in the 

power series representation of the logarithm of the moment-generating function. 

The logarithm of the moment-generating function is therefore called the 

cumulant-generating function, written as   

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are also equivalently defined in terms of the characteristic function, which is the 

Fourier transform of the probability density function: 

  

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  dfeeu iuiu )()( . The cumulants  nK  are then defined as 
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Ku . The method of cumulants attempts to recover a probability 

distribution from its sequence of cumulants. In some cases no solution exists; in 

some other cases a unique solution, or more than one solution, exists. The 

relationship between moments and cumulants is of paramount importance in the 

estimation of the unknown parameters of the density function. First, consider 

moments about 0, which can be written as ,2,1,0),(  jm j

j . The 

cumulant/moment theorem says that if X is a random variable with n moments 

nmmm ,,, 21  , then X has n cumulants nKKK ,,, 21  , and the cumulants 

are related to the moments by the following recursion formula 
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This recursion formula is the Faa di Bruno’s formula, equivalently written as 
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Note that if the initial value 10 m . By carrying the recursion formula, the 

relation between raw moments and cumulants can be stated as 11 Km  , 

respectively. 
 

Press (1967) used the method of cumulants as described in Kendall and Stuart 

(1977) to estimate the J-D model. Define the characteristic function (CF) of  t  

as  

     tttt dfiuiuu )(exp)exp()(           (19)  

where )( tf   is the probability density function of t , u is the transform 

variable, and i1 . The characteristic function )(u  is related to the moment 

generating function )(uG .     )()exp()exp()( ttt dFuuuG  by a 

change of the transform variable  iuu  , namely )()( uiuG      and  

)()( iuuG    .  The cumulants of  t  , denoted by ,,2,1,0, nK n  are the 

coefficients in the power series expansion of the logarithm of the CF of t , expressed as: 
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 Noting that the characteristic function (CF) for the jump-diffusion process is 

given by: 
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It follows that the first four cumulants of the J-D process are 
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to recover the parameters of the J-D process from sample moments. Press (1967), 

in order to avoid using higher order cumulants, imposed the restriction 0  and 

derived the following relations:  
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Press’ estimates were often wrong-signed and not plausible. Beckers (1981) 

adopted the same method as Press, however, setting  , instead of  , to zero. 

Using sixth order cumulant, his cumulant equations yielded the following system:  
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Beckers’ estimates improved those of Press, yet they were not free of anomalies. 

Ball and Torous (1983), using a Bernoulli, instead of a Poisson jump process and 

maintaining Beckers’ restriction, i.e. 0 , derived the following cumulant 

equations:  
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Again by equating with population cumulants, they obtained estimators 
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Das and Sundaram (1999) used the method of moments to estimate the J-D model. 

Denoting the log-price return by tx  and assuming that the jump size tJ  is 

distributed as ),(~ 2J , they showed that the first moments of the J-D 

process are given by the following equations which they used to estimate the 

model’s parameters; however, for the Poisson parameter,  , they imposed a given 

value. 
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RESULTS AND DISCUSSION 
Data on crude oil prices for January, 1986 to July, 2015 indicated that oil price 

volatility was not stationary (Figure 1).  The dynamics were characterized by high 

volatility, high intensity jumps, and strong upward drift, indicating that oil 

markets were constantly out-of-equilibrium. The inverse leverage effect and the 

economic downturn experiencing in Nigeria from September, 2014 to the end of 

the sampled period are indications that the country’s sole dependent on crude oil 

has consequences on non-provision of social amenities, public utilities, 

unemployment and by extension impoverishing the citizenry.  This “inverse 

leverage effect” is also found in empirical studies for a large number of 

commodities such as oil, gas and soybeans, (Geman, 2005). While averaging 25 

percent, volatility often surged to 40–45 percent, indicating that oil markets were 

experiencing big uncertainty regarding expected price developments and were 

highly sensitive to small shocks and news. Volatility pattern shows volatility 

clustering during rising pressure on oil prices and volatility decline during 

reduced pressure on oil prices. High volatility increases speculative demand for 

futures contracts, which in turn leads to higher volatility and volatility clustering. 

The plot of log-transform of the data on monthly oil prices covering January, 1986 

to July, 2015 gives the oil price return defined as: 1logloglog  tttt SSSx  

in Figure 2. The fitting of the GARCH model showed high price volatility, 

periods of volatility clustering, followed by some reversion to a mean volatility 

estimated at 33 percent. GARCH volatility was rising during periods of large 

price shocks, increasing speculation and leading to volatility clustering; it was, 

however, receding during periods of price retreat. It corroborated the observed 

implied volatility, namely oil markets were constantly experiencing large 

uncertainties and were impacted by frequent shocks. 
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Fig. 1: Time Plot of Monthly Crude Oil Price (January, 1986-July, 2015) data 

 

Obviously, the graph of oil price is not stationary. Sharp oil price movements, 

dramatic uncertainty for the global economy and trends in changing oil prices has 

an impact on world politics, economy, military and all sectors of society, 

especially in Nigeria and other developing countries and therefore threaten future 

oil demand growth. So increasingly important is the interests of government, 

companies and investors on this crude oil. The plot details many striking facts 

regarding oil markets at the outset. Foremost, world oil demand pressure kept 

increasing within the sampled period, causing oil prices to rise by more than 

three-fold, January, 2002 to October, 2009.  Second, the noted ascent in oil prices 

was not monotonic or smooth; oil prices rose, often to a new record, retreated 

temporarily, then resumed their move to higher record; their movements were 

dominated by high intensity jumps, indicating that oil markets were constantly 

out-of-equilibrium. Third, oil price volatilities were excessively high. Measured 

by the implied volatility, volatility was in the range of 21 percent, implying that 

oil markets were facing big uncertainties regarding future price developments and 

were sensitive to small shocks and to news. More specifically, markets held 

higher probabilities for further price increases than price decreases. Recently, the 

world economy is experiencing recession and this lead to a drastic fall in crude oil 

prices as opposed to what happened from 2000 to 2009.   
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Fig. 2: Volatility Clustering of log Monthly Crude Oil Price (January, 1986-July, 2015) data 

 

We observe from Figure 2 that there exist a prolonged low volatility between1960 

to 1991 and then there is a sudden shock, spike which is immediately followed by 

a prolonged low volatility. In other words, periods of high volatility is followed 

by periods of low volatility and periods of low volatility is followed by periods of 

high volatility (Mandelbrot 1963). Figure 2 also depicts that the distribution was 

left-skewed (with estimate of -0.35), implying that downward jumps of smaller 

size were more frequent than upward jumps of larger size; as the mean was 

positive and high, smaller jumps were outweighed by larger jumps. The 

distribution had also fat tails, meaning that large jumps tended to occur more 

frequently than in the normal case (kurtosis equals 4.17 greater than 3).  When the 

residual behaves like this, it suggests that the error term or residual is 

conditionally heteroskedastic and it can be represented by autoregressive 

conditional heteroskedasticity (ARCH) and generalized autoregressive conditional 

heteroskedasticity (GARCH) family models. 

 

Let tS  be the oil futures price in US$/bl. An augmented Dickey-Fuller test 

indicated that tS  possessed a unit root; it was pulled by an upward trend, showing 

no sign for mean reversion. Changes in tS , defined as 1 ttt SSS  , were, 
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however, stationary. Based on the unit-root test, the dynamics of the oil process 

were represented by a simple auto-regression of order two (AR2)  

 
)78.0()6.3()4.29(

12.0045.089.0 21



 

ttt

SSS ttt

                    (29) 

which yielded good fit )96.0( 2 R , highly significant coefficients as evident 

from high t statistics and the DW = 2.03.   

  

Based on a sample of monthly crude oil prices, alternative methods of Krienchene 

(2006) were also used for estimating the J-D model. First, assuming a Bernoulli 

jump process, the ML was applied unrestrictedly, and with restriction on the 

probability λ of a jump occurring on a trading day given by 20.0 . Second, the 

method of cumulants was applied consecutively with restrictions 0,20.0    

(Press, 1967) and 0  (Beckers, 1981), respectively. The results were 

approximately in agreement with Krienchene (2006) estimates as presented in the 

Table 1 below. 
 

Table 1: Jump-Diffusion Model: Parameter Estimates 
Methods Drift   Variance 

2  Intensity   Mean   Variance 
2  

Bernoulli process 

Maximum likelihood 

 

 

Maximum likelihood 1/ 

 

 

Cumulants 1/ 

Press (1967) 2/ 

Beckers (1981)  3/ 

 

0.21 

(t = 3.22) 

 

0.29 

(t =3.18) 

 

0.33 

0 

0.10 

 

6.53 

(t = 21.43) 

 

5.74 

(t =19.24) 

 

1.91 

6.97 

3.46 

 

0.69 

(t = 1.76) 

 

0.20 

 

 

0.20 

0.13 

0.27 

 

-2.17 

(t = -3.19) 

 

-0.57 

(t = -2.77) 

 

-0.73 

1.15 

0 

 

6.54 

(t = 18.75) 

 

11.89 

(t = 9.31) 

 

3.47 

-12.68 

9.21 

1/  Restriction on  20.0 , computed from the data sample as the frequency of a jump in the 

crude oil price 

exceeding  3  percent. 2/ Restriction on 0 . 3/ Restriction on 0 . 

 

In Table 1, assuming a Bernoulli jump process, the ML estimates were highly 

significant and stable. The drift of the diffusion component, estimated at 21.0ˆ  , 

was very high and significant, showing that oil prices were constantly under 

pressure to move upward. The variances of the diffusion and jump components 

were high and significant, 53.6ˆ 2   and 54.6ˆ 2  , respectively. The variance 

of the jump component became more important than that of the diffusion 
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component when the jump intensity was restricted to 20.0 . The probability of 

a jump in the unrestricted case, computed at  69.0ˆ  , was high and borderline 

significant. The mean of the jump component, estimated at   17.2ˆ  , was 

negative and consistent with the negative skewness (-0.35) observed in the data. 

Oil prices tended to make large moves upward, then started to retreat through a 

sequence of smaller and frequent negative jumps, until they were shocked again, 

making new jumps forward. Yet, the significance of the drift of the diffusion 

process was such that the smaller negative jumps could not outweigh the strong 

momentum that kept pushing oil prices upward. 

   

The method of cumulants was applied under alternative restrictions. The 

restriction 20.0  yielded results that were similar to the ML under the same 

restriction. The drift of the diffusion component, estimated at 33.0ˆ  , was very 

high, showing that oil prices were constantly under pressure to move upward. The 

variances of the diffusion and jump components, were estimated at  91.1ˆ 2   and 

47.3ˆ 2  , respectively, indicating that the jump component tended to dominate 

the dynamics of the oil price process. The mean of the jump component, estimated 

at 73.0ˆ  , was negative and consistent with the negative skewness in oil price 

returns. Application of the Press (1967) method, with the restriction 0 , 

yielded implausible results for the variance of the jump component, namely 

68.12ˆ  2. Such an anomaly was not unexpected in the case of Press’ method, 

indicating that the restriction 0 , could not be borne by the data, and was in 

sharp contrast with the strong upward trend in oil prices. In contrast, Beckers’ 

method, with the restriction 0 , yielded results which were highly plausible. 

The drift component of the diffusion, estimated at 10.0ˆ  , was smaller than, 

say, in the ML case, since 0  implied less influence for the drift of the 

diffusion, compared to the case when   was negative, to maintain an upward 

trend in oil prices; it was, however, close to the drift of the AR(2) model in 

equation (29). The variances of the diffusion and jump components were high, 

46.3ˆ 2   and 21.9ˆ 2  , respectively. The variance of the jump component, 

however, dominated that of the diffusion component. Noticeably, the jump 

intensity, estimated at 27.0ˆ  , was quite close to the frequency of jumps in oil 

prices exceeding ±3 percent, computed from the data set. 

 

The results obtained established that when modelled crude oil price as a jump-

diffusion (J-D) process, oil price dynamics were dominated by the discontinuous 
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Poisson jump component compared to the continuous Gaussian diffusion 

component, showing that oil markets were constantly out-of-equilibrium during 

the sample period and were sensitive to demand and supply shocks and to news. 

While the variance of the diffusion component was high and significant, it was 

surpassed by a still higher and significant variance of the jump component. Both 

variances, together, illustrated the high volatility of the oil markets. 
 

CONCLUSION 
The empirical analysis indicates that the autoregressive model of order two 

(AR(2)), generalized autoregressive conditional heteroskedasticity (GARCH (1, 

1)) model as well as the Jump-Diffusion model are best for estimating the crude 

oil price data series within the sampled period. The results also show that the 

Jump-Diffusion model out-perform the other two models for estimating the drift 

and jump despite the crude oil fluctuations. The method of maximum likelihood 

and cumulants were utilized. The results show that the drift of the diffusion 

component )(  was, however, very high and significant, indicating that oil prices 

were strongly influenced by an upward trend. The mean of the jump component 

)(  was negative; more specifically, sharp upward jumps in oil prices had a 

temporary restraining effect on oil demand and were followed by a short-lived 

sequence of price retreats. The mean of the jump component was, however, 

outweighed by the drift of the diffusion component which kept prices on a rising 

trajectory. The study, therefore, provides independent and impartial crude oil 

price information to promote sound policymaking, efficient markets and 

understanding of crude oil price and its interaction with the economy and the 

environment. 
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